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Foreword by Freeman Dyson

‘Chis is a book about a special kind of geometry that was invented and
widely practiced in Japan during the centuries when Japan was isolated
from Western influences. Japanese geometry is a mixture of art and math-
ematics. The experts communicated with one another by means of sangaku,
which are wooden tablets painted with geometrical figures and displayed
in Shinto shrines and Buddhist temples. Each tablet states a theorem or a
problem. It is a challenge to other experts to prove the theorem or to solve
the problem. It is a work of art as well as a mathematical statement. Sangaku
are perishable, and the majority of them have decayed and disappeared
during the last two centuries, but enough of them have survived to fill a
book with examples of this unique Japanese blend of exact science and ex-
quisite artistry.

Each chapter of the book is full of interesting details, but for me the
most novel and illuminating chapters are 1 and 7. Chapter 1 describes the
historical development of sangaku, with emphasis on Japan’s “peculiar insti-
tution,” the samurai class who had originally been independent warriors
but who settled down in the seventeenth century to become a local aristoc-
racy of well-educated officials and administrators. It was the samurai class
that supplied mathematicians to create the sangaku and work out the prob-
lems. Itis remarkable that sangaku are found in all parts of Japan, including
remote places far away from cities. The reason for this is that samurai were
spread out all over the country and maintained good communications even
with remote regions. Samurai ran schools in which their children became
literate and learned mathematics. Samurai combined the roles which in
medieval Europe were played separately by monks and feudal lords. They
were scholars and teachers as well as administrators.

Chapter 7 is my favorite chapter, the crown jewel of the book. It contains
extracts from the travel diary of Yamaguchi Kanzan, a mathematician who
made six long journeys through Japan between 1817 and 1828, recording
details of the sangaku and their creators that he found on his travels. The
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diary has never been published, but the manuscript is preserved in the ar-
chives of the city of Agano. The manuscript runs to seven hundred pages,
so that the brief extracts published here give us only a taste of it. It is
unique as a first-hand eye-witness description of the sangaku world, written
while that world was still at the height of its flowering, long before the sud-
den irruption of Western culture and modernization that brought it to an
end. I hope that the diary will one day be translated and published in full.
Meanwhile, this book, and chapter 7 in particular, gives us a glimpse of
Yamaguchi Kanzan as a mathematician and as a human being. Having
been present at the creation, he brings the dead bones of sangaku to life.

I am lucky to have known two scholars who have devoted their lives to
cultivating and teaching geometry. They are Daniel Pedoe in England and
the United States, and Fukagawa Hidetoshi in Japan. Each of them had to
swim against the tide of fashion. For the last fifty years, both in art and
mathematics, the fashionable style has been abstract: famous artists such as
Jackson Pollock produce abstract patterns of paint on canvas; famous math-
ematicians such as Kurt Godel construct abstract patterns of ideas detached
from anything we can feel or touch. Geometry is like representational
painting, concerned with concrete objects that have unique properties and
exist in the real world. Fashionable artists despise representational paint-
ing, and fashionable mathematicians despise geometry. Representational
painting and geometry are left for amateurs and eccentric enthusiasts to
pursue. Pedoe and Fukagawa are two of the eccentric enthusiasts. Both of
them fell in love with sangaku.

Fukagawa Hidetoshi has been a high-school teacher in Aichi, Japan, for
most of his life. During school holidays he has spent his time visiting tem-
ples all over Japan, photographing sangaku as works of art and understand-
ing their meaning as mathematical problems. He knows more about sangaku
than anyone else in the world. Unfortunately, in the hierarchical academic
system of Japan, a high-school teacher has a low rank and is not highly re-
spected. He was not able to interest high-ranking professors in his proposal
to publish a book about his findings; without support from the academic
establishment, his work remained unpublished and unknown. After many
years he finally found a publisher outside Japan, with the help of Daniel
Pedoe.

Daniel Pedoe was my teacher when I was studying mathematics as a boy in
an English high-school long ago. He gave me my first taste of mathematical
research, asking me to work out a mapping of the circles in a Euclidean plane
onto the points of a three-dimensional Euclidean space. I found the mapping,
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and my eyes were opened to the power and beauty of geometry. Many of the
properties of circles became intuitively obvious when I looked at the map.
Later, I renewed my friendship with Pedoe after we both moved to America.
Forty years later, Pedoe discovered sangaku. He was then a professor of math-
ematics in Minnesota, and there he received a letter from Fukagawa. Fu-
kagawa had written to six mathematicians known to be interested in
geometry, informing them of the existence of sangaku and inviting them to
collaborate in making sangaku known to the world outside Japan. Pedoe was
the only one of the six who answered. He agreed to collaborate with Fu-
kagawa in producing the book jJapanese Temple Geometry Problems, which was
published in English in 1989 by the Babbage Institute in Winnipeg, Canada.
Pedoe paid for Fukagawa and his wife to come to Minnesota to work on the
book, and he also visited Fukagawa in Japan. He remained a close friend of
Fukagawa’s and a promoter of sangaku until his death in 1998.

In 1993 I was invited to Japan to give lectures at Japanese universities,
and I finally had a chance to meet Fukagawa in person. Dan Pedoe made
the arrangements for our meeting. My academic hosts expressed surprise
that I should wish to speak with a “lowly” high-school teacher, and tried to
cut my visit with him short. They allowed me only a few hours to spend with
him, visiting a temple where some outstanding sangaku are preserved and
an abacus museum where we could see other artifacts of indigenous Japa-
nese mathematics. I would happily have stayed longer, but my hosts were
inflexible. Since then I have stayed in touch with Fukagawa as he continued
to make new discoveries and deepen his understanding of the historical
context out of which the sangaku emerged.

This book contains far more than the book that was published in Win-
nipeg in 1989, which presented the sangaku as a gallery of isolated works of
art, without any information about their historical context. Little or noth-
ing was said about the artists who created them or the connoisseurs for
whom they were made. This book supplies the missing background infor-
mation. One third of the book (chapters 1, 2, 3, and 7) is a narrative his-
tory of Japanese mathematics, with a full account of the leading individual
mathematicians and the society to which they belonged. The middle sec-
tion (chapters 4, 5, and 6) is an up-to-date display of sangaku problems
arranged in increasing order of difficulty. The final section (chapters 8, 9,
and 10) is a technical discussion of Japanese mathematical methods, with a
comparison of Japanese and Western ways of solving geometrical problems.

In conclusion, I wish to thank my friend Tony Rothman for his big share
in the writing of this book. I am responsible for introducing him to temple
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geometry, and grateful to him for the long months of hard work that he put
into the project. Although Fukagawa was the prime mover, it was Rothman
who brought the task to a successful conclusion. Rothman translated and
paraphrased Fukagawa’s notes into readable English, and contributed
many explanatory passages to make the mathematical problems and solu-
tions understandable for English-speaking readers. Those familiar with
Rothman’s writing will recognize his work throughout. Without Rothman’s
massive and unselfish help, the book could never have been published.

Institute for Advanced Study,
Princeton, New Jersey
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When I became a high school mathematics teacher forty years ago,
I studied the history of Western mathematics and would present some of
this historical material to my students. In those days, it was said that tradi-
tional Japanese mathematics had no material of any value for high school
students. In 1969, a teacher of traditional Japanese literature showed me a
traditional Japanese mathematics book printed in 1815 from wooden blocks.
He asked me to decipher the book since it was written in difficult old Japa-
nese. When I finished deciphering it, I found that traditional Japanese
mathematics of the seventeenth, eighteenth, and nineteenth centuries had
much good material for high school students. In those centuries Japan
closed its doors to the outer world and many native cultures developed, one
of which was traditional Japanese mathematics. In Japan in that era, there
was no official academia, so mathematics was developed not only by schol-
ars but also by ordinary people. Lovers of mathematics dedicated to shrines
and temples the wooden tablets on which mathematics problems were writ-
ten. We call this mathematical world “Japanese temple geometry.” The
mathematics lovers who formed this world enjoyed solving geometry prob-
lems. The present authors hope that readers of this book will also find en-
joyment in trying to solve some of those same problems.
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J vividly remember the day if not the year: It was 1989 or 1990; I had
stopped by Freeman Dyson’s office for lunch at the Institute for Advanced
Study in Princeton, New Jersey. No sooner had Freeman raised his hand in
his customary salute than he said, “Take a look at this,” and placed into my
own hand a small paperback book he’'d received that very morning. The
simple blue cover bore the title Japanese Temple Geometry Problems, San Gaku,
and nothing more. The words meant nothing to me, and the blank expres-
sion on my face surely conveyed as much to Freeman. Paging through the
book, I saw that it was a collection of geometry problems, assembled by Hi-
detoshi Fukagawa and Freeman’s old math teacher from England, Dan Pe-
doe, who had sent it to him. Over the next few minutes, Freeman began to
chuckle and then guffaw as he watched my expression change from baffle-
ment to disbelief to open astonishment. For good reason. The first thing
that struck me about the problems was how different they were from the
those I'd studied in high school geometry. Nothing like this was ever pro-
duced in the West. The problems looked Japanese. The second thing that
struck me was how beautiful they were, no less than miniature Japanese
works of art. The third thing that dawned on me in those confused mo-
ments was how difficult they were. Without having attempted a single one
of them, I understood quickly enough, standing there with dropped jaw,
that I hadn’t the faintest idea of how to tackle the majority—and I am sup-
posed to be a mathematically inclined physicist.

Through Freeman I had stumbled on the strange and wonderful tradi-
tion of Japanese temple geometry. As readers will learn in the coming
pages, for over two hundred years Japan was isolated by imperial decree
from the West and had little, if any, access to Western developments in
mathematics. Yet during that time Japanese mathematicians from all walks
of life created and solved astonishingly difficult problems, painted the solu-
tions on beautiful wooden tablets called sangaku, and hung the tablets in
Buddhist temples and Shinto shrines.
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Struck by this unique custom, I eventually wrote to Hidetoshi Fukagawa,
the Japanese author of the problem book, and asked whether there was
enough known about sangaku to warrant an article for Scientific American.
Fukagawa, a high school teacher in Aichi prefecture with a doctorate in
mathematics, replied that probably enough was known about the custom’s
origin for an article, and he generously supplied time and material. As it
turned out, Hidetoshi was one of the world’s experts on Japanese temple
geometry, or more generally traditional Japanese mathematics. He him-
self had stumbled on a mention of sangaku in an old book decades earlier,
decided they were an excellent teaching tool, and had been studying them
ever since. Hoping to interest Westerners in the tradition, he’d written ran-
domly to a number of European and American mathematicians. Dan
Pedoe, a noted educator, alone responded and the result was the book that
Freeman had received. And so, with substantial help from Hidetoshi, I
wrote a piece for Scientific American, which after languishing in editorial
limbo for three or four years, eventually appeared in the May 1998 issue.

‘the present book is partially an outgrowth of the Scientific American arti-
cle and Hidetoshi’s earlier work. However, we did not want to publish
merely another problem book. Rather, we decided to try to place the prob-
lems in the context of traditional Japanese mathematics and, more gener-
ally, of the culture of the times. To set the stage, we have given a short
introduction to Japanese mathematics, especially in the seventeenth cen-
tury, when the tradition of temple geometry began, and we have also in-
cluded a chapter on traditional Chinese mathematics, which so profoundly
influenced Japanese developments. Throughout, we have attempted to
maintain an historical flavor, including discussions of the important Japa-
nese mathematicians and, along with the problems, vignettes about the
creation and discovery of the tablets on which they are found.

Since the appearance of the Scientific American article, moreover, Hi-
detoshi and his colleagues have learned a great deal about the origins of
traditional Japanese mathematics, and we are able to present significantly
more material about the origin and purpose of sangaku. In particular, we
are pleased to bring to a Western audience for the first time a substantial
excerpt from the travel diary of Yamaguchi Kanzan, an early nineteenth
century mathematician who took several extended walking tours around
Japan specifically to collect sangaku problems. Yamaguchi’s diary provides a
“smoking gun” showing that Japanese mathematicians often hung the tablets
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as acts of worship, thanks to the gods for being able to solve a difficult prob-
lem. In this sense, temple geometry is indeed sacred mathematics.

Finally, in the years since the article appeared, Hidetoshi has succeeded
in organizing a large exhibit of over 100 sangaku at the Nagoya Science Mu-
seum, which took place in 2005 under sponsorship of the daily newspaper
Asahi Shinbun. We are fortunate to be able to publish here some of the origi-
nal photographs from the exhibit catalog. Readers cannot but be struck by
the beauty of the tablets and we are certain it will add to the artistic aspect
of the book. To that end, we have attempted to include contemporary draw-
ings and illustrations that will put the mathematical artin the context of the
prevailing art of the times. We have also included some of the original draw-
ings of temple geometry problems from rare seventeenth-nineteenth cen-
tury rice-paper books. We hope that they help make Sacred Mathematics as
much an artistic creation as an historical and mathematical one.

_Che authors’ collaboration for this project has been unusual. To this day
Hidetoshi and I have never met and the work has taken place entirely by
email. Hidetoshi has been the primary author. His collection of rare books
on traditional Japanese mathematics, consisting of several hundred volumes,
dwarfs anything available in Western libraries, and by now he has been study-
ing the subject for forty years. My role has been to a large degree editorial.
Hidetoshi’s native language is far from English, and I speak no Japanese.
Fortunately, mathematics is universal. I have taken Hidetoshi’s drafts and at-
tempted to render them in reasonably fluent English. I have also added sub-
stantial material, redrawn the diagrams, and gone through all the proofs,
attempting to simplify them slightly. Hidetoshi’s solutions are those of a pro-
fessional mathematician, and I have frequently felt a few more steps and dia-
grams were needed to make them accessible to American students (or at
least their teachers!), who we certainly hope will try the problems. In the
more difficult exercises I have added more explanation, in the easier ones
less, sometimes none at all; one or two of the solutions are my own.

My only guide in this procedure has been my experience of having taught
many university students, often freshmen, from whom I have learned that if
I have difficulty with a problem, they sometimes will. In Sacred Mathematics
we often present traditional solutions. However, these are frequently transla-
tions from Kanbun to Japanese to English with modern mathematical nota-
tion, whereas traditional solutions did not use trigonometric functions,
lacked indications of angles, and so forth. The “traditional” proofs in this

xvii
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book therefore should not be regarded in any sense as literal transcriptions.
When we have been able to closely follow the original, I have put my com-
ments in brackets []; otherwise, I have edited the traditional proofs as I have
all the others. Whether I have found a reasonable balance in all this, the
audience will judge. I am certain only that professional mathematicians will
be annoyed, but I hope they will indulge the lack of formality.

An ideal second author for this book would have been a mathematician
fluent in Japanese as well as in Japanese history. The present circumstance
is not perfect, especially in the case of Yamaguchi’s diary, because I have no
way of knowing how accurate my translation has been, except insofar as it
has met with Hidetoshi’s approval. But, as they say, I wanted to get the job
done, and will welcome a better translation in the future by a professional.

Among the hurdles in learning Oriental mathematics is the bewildering
profusion of transliterations and translations for Chinese names and book
titles, some almost unrecognizable as referring to the same person or work.
For the Chinese I have usually gone with the transliterations from the St.
Andrews University MacTutor website, merely on the assumption that most
readers will follow up there on any statements made here. Japanese names
present their own problem. In Japan, it is customary to refer to people by
surname first. Not only that, but Japanese mathematicians often have two
names, one used by Westerners and one used by Japanese. In this book we
follow the convention of surname first, and also use the names most com-
mon among Japanese. Thus the most famous Japanese mathematician,
known as Kowa Seki in the West, becomes Seki Takakazu and Hidetoshi Fu-
kagawa becomes Fukagawa Hidetoshi. After considerable discussion we have
decided to use the Hepburn romanization system for the transliteration of
Japanese words, which is not popular among the Japanese but is the most
familiar to Western readers. We might also mention that we have, as consis-
tently as possible, spoken of Buddhist temples but Shinto shrines.

Finally, despite all vigilance, errors must inevitably creep into a book
such as this. Readers should report any such discoveries to the publisher or
authors.
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What Do J Need to Know to Read This Book?

We hope this book can be read in three ways: as an art book that de-
lights simply by the perusal of it, as a history book that provides a little in-
sight into an aspect of Japanese culture rarely mentioned in standard
surveys, and finally as a problem book that provides challenging exercises
at both the high school and college levels.

Readers who intend to tackle the problems may wish to know at the out-
set the prerequisites. One requirement looms above all: patience. On first
encounter with a sangaku problem there is a considerable “choke” factor. At
first glance, Western students will find many of the problems strange, un-
like those they have seen before, and one’s first reaction tends to be, “I
can’t do that!”

Do not despair! Half the problems in Sacred Mathematics require no more
than the most elementary methods, taught in any high school geometry
course. The individual steps are no larger than in typical textbook prob-
lems. What is different is that sangaku problems are frequently far more in-
tricate than the usual exercises American students encounter. Instead of
running four or five lines, proofs may run four or five pages—if not ten.
What is more, it is necessary to bring to bear everything you've learned from
your geometry course. Sooner or later you will require virtually every theo-
rem about circles, quadrilaterals, triangles, and tangents that you have
proved. Some of the more difficult exercises require a good deal more than
that. You should not be surprised if you spend hours—or days—working
the advanced problems.

Following patience, a number of specific tools are required to solve san-
gaku problems. Because Sacred Mathematics is not intended to be a textbook,
however, for the most part we do not teach basic methods. If you do try the
problems itis a good idea to have a standard geometry text handy as a refer-
ence. A few suggestions, ranging from the elementary to the advanced are
offered in “For Further Reading” on page 337; nevertheless, by way of help-
ful hints we can be a bit more specific here about what you will need.
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What to Know to Read This Book

A good drawing is indispensable. Many of the problems are fairly subtle,
and it is not enough to make a rough sketch, which will deceive you; you
need to make an accurate drawing that reflects the true conditions of the
problem. Often the route to a solution becomes obvious when you’ve drawn
in the appropriate auxiliary lines.

The single most important mathematical tool will be the Pythagorean
theorem. This basic theorem, which was known to the Japanese through
China, is used constantly throughout, and a large percentage of the prob-
lems can be solved with nothing more. If you are uncomfortable with the
Pythagorean theorem, the problems in this book will be extremely dif-
ficult.

Hand in hand with the Pythagorean theorem, many, if not most, of the
problems require solving quadratic equations. Not only will you frequently
need the quadratic formula, which was also known to the Japanese, but it
will often prove more convenient to solve the equation by “completing the
square.” Nearly as often you will encounter quadratics in the square root of
a quantity, usually the radius of a circle, +r, and so you will need to know
the basic methods for handling square roots, such as rationalizing denomi-
nators.

After the Pythagorean theorem and quadratics, the most frequently
needed tool is probably properties of similar triangles, those theorems that
go by names like AAA and SAS. You need all of them. Likewise, you will
require virtually all the trigonometric identities involving sine, cosine, and
tangent, that is, not only the basic Pythagorean identity, sin20+ cos?20=1
but every variation on it, as well as all the half-angle and double-angle for-
mulas.

The law of cosines also crops up often. This is the generalization of the
Pythagorean theorem for nonright triangles that gives the third side of a
triangle ¢ in terms of the other two sides: ¢? = a® + b* — 2ab cos 6, where 0 is
the included angle between sides a and b. The law of sines also figures oc-
casionally: a/sin A= b/sin B= ¢/sin C, for triangles with vertex angles A, B,
C and opposite sides a, b, c. Although traditional Japanese mathematicians
did not explicitly use trigonometric functions, they did employ the equiva-
lents and all these relationships were understood by them. Solutions to
problems in chapters 4 and 5 will give a better idea of how those mathema-
ticians operated.

Frequently, problems are solved by considering the area of triangles,
rather than the lengths of the sides. In both this context and when employ-
ing the Pythagorean theorem, one basic fact crops up repeatedly: that two
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tangent segments to a circle drawn from an external point P are equal in
length. This is sometimes referred to as the “tangent segments theorem.” If
you have not seen this proven in an elementary course, you may wish to
prove it now; it is very easy. The “intersecting chords theorem” is also fre-
quently encountered: if two chords intersect in a circle, the product of the
lengths of the segments of one chord equal the product of the lengths of
the segments of the other chord (figure 0.1). Other theorems we introduce
as needed.

Figure 0.1. The intersecting chords theorem: aX b=c¢X d

For solving some of the more advanced problems, a “modern” technique
that proves extremely useful is that of “inversion.” However, because inver-
sion is not generally taught in schools anymore, we include a chapter (10) to
explain this powerful method.

A handful of problems requires calculus, but except for a very small
number, this does not go beyond basic differentiation and integration.

xxiii






Notation

We have tried to keep the notation used throughout this book standard
and simple, but, at the risk of annoying professionals, have also tried to obvi-
ate some terms that nonmathematicians may not regularly encounter, such
as “circumcircle” and “perpendicular foot.” (Clearly, feudal Japanese farm-
ers would not have used such terminology.) When avoidance of specialized
terms has proven futile, if we do not define them explicitly, we trust they are
defined in context. For the record, “circumcircle” is merely the circle cir-
cumscribed around a given polygon, while “incircle” is the circle inscribed
within a given polygon. “Circumcenter” and “incenter” refer to the centers
of these circles. When many figures are contained in, for example, a circle
and touch one another, we sometimes speak of the collection as being
“inscribed,” although this may technically be a misuse of the term.

In dealing with triangles, upper-case letters refer to vertices, while lower-
case letters refer to sides. The side opposite vertex A is usually labeled a.
Sometimes we use the symbol for the vertex to refer to the angle itself, such
as ZA. All this is standard.

Although most American texts use radial lines or arrows to denote radii
of circles, Japanese problems typically involve multitudes of circles, and
drawing so many radial lines becomes confusing. Thus, we often denote
the radius of a circle simply by a dot in the center with the indicated radius
rnearby. This takes a little getting used to, but proves very convenient. Just
as important to note is that we frequently speak of a circle by its radius, that
is, “circle »” refers to the circle of radius 7.
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Plate 1.1. This rare map of Japan “Iaponi nova description” (Amsterdam, 1647-1656)
was drawn by the Dutch cartographer Jan Jansson (1588-1664). The original print is
33 cm X 43 cm from copperplate. A modern map can be found on page 6. (Historic
Maps Collection, Princeton University Library.)
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Japan and Temple Geometry

Temp'e bells die out.
The fv*agv*an’r blossoms remain.
A pey*fec’r evening!

—Bashs

_[emples

No visitor to a foreign country has failed to experience the fascination and
unease that accompanies an encounter with unknown traditions and cus-
toms. Some visitors attempt to overcome their fears, while the majority
quickly retreats to familiar shores, and in this lies a distinction: Those who
embrace culture shock are travelers; those who do not are tourists.

The most profound culture shock comes about when one is confronted
by a different way of thinking. Most of us can hardly imagine walking into
a Western church or cathedral to encounter stained glass windows covered
by equations and geometrical figures. Even if we can conceive of it, the
thought strikes us as alien, out of place, perhaps sacrilegious. Yet for well
over two centuries, Japanese mathematicians—professionals, amateurs,
women, children—created what was essentially mathematical stained glass,
wooden tablets adorned with beautiful geometric problems that were si-
multaneously works of art, religious offerings, and a record of what we
might call “folk mathematics.” The creators of these sangaku—a word that
literally means “mathematical tablet”—hung them by the thousands in
Buddhist temples and Shinto shrines throughout Japan, and for that rea-
son the entire collection of sangaku problems has come to be known as
“temple geometry,” sacred mathematics.

In this book you will be invited not only to encounter temple geometry
but to appreciate it. There is a bit of culture shock to be overcome. A single
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Figure 1.1. Which diagram would you guess came from an American geometry text?

glance at a sangaku is enough for one to realize that they were created by
a profoundly different esthetic than the Greek-inspired designs found in
Western geometry books. On a deeper level, one learns that the methods
Japanese geometers employed to solve such problems differed, sometimes
significantly, from those of their Western counterparts. Ask any profes-
sional mathematician whether the laws of mathematics would be the same
in another universe and he or she will reply, of course. Real mathemati-
cians are Pythagoreans—they cannot doubt that mathematics exists inde-
pendently of the human mind. At the same time, during their off hours,
mathematicians frequently speculate about how different mathematics
could look from the way it is taught in Western schools.

Temple geometry provides a partial answer to both questions. Yes, the
rules of mathematics are the same in East and West, but yes again, the tra-
ditional Japanese geometers who created sangaku saw their mathematical
world through different eyes and sometimes solved problems in distinctly
non-Western ways. To learn traditional Japanese mathematics is to learn
another way of thinking.

_Craditional Japanese mathematics, and with it temple geometry, arose
in the seventeenth century under a nearly unique set of circumstances. In
1603, three years after defeating his rival daimyo— warlords—at the battle
of Sekigahara, Tokugawa Ieyasu became shogun of Japan, establishing the
Tokugawa shogunate. (A contemporary depiction of the battle of Sekiga-
hara can be seen in the color plate 1.) The Tokugawa family ruled Japan
for the better part of three hundred years, until 1868, when a decade after
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Plate 1.2. An anonymous and undated woodblock print (probably mid-nineteenth
century) shows Nagasaki harbor with the small fan-shaped island of Deshima in
the foreground. Another view of Deshima can be seen in color plate 2.

(© Nagasaki Museum of History and Culture.)

Commodore Matthew C. Perry forcefully opened Japan to the West, the
shogunate collapsed.

One of Ieyasu’s first moves after Sekigahara was to establish his head-
quarters at a small fortress town in central Japan, a town that became
known as Edo (pronounced “Yedo”)—today’s Tokyo. For that reason the
rule of the Tokugawa is also known as the Edo period. During the first
years of the Tokugawa shogunate, Ieyasu (who, although living until 1616,
officially remained shogun only until 1605) consolidated power by confis-
cating the lands of other warlords, but nevertheless continued many of the
foreign policies of his predecessor, the great daimyo Toyotomi Hideyoshi
(1537-1598). At the turn of the seventeenth century, Japan carried on
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substantial trade with foreign countries, both Eastern and Western. Naga-
saki on the island of Kytishti had become the base for the “southern barbar-
ians” to import their goods, as well as to print translations of Western
literature, much of it religious.

Foreign missionaries had by then been in Japan for over fifty years. In au-
tumn of 1543, three Portuguese were shipwrecked off Kytshu. The misfor-
tune proved decisive in terms of Japan’s relations with outsiders, for the men
were carrying arquebuses, which were rapidly adopted by the Japanese war-
lords. Of equal or greater importance was that, within a few years of the fate-
ful shipwreck, Portuguese merchants and Jesuit missionaries began to arrive,
seeking both trade and converts. The Jesuits were particularly successful,
converting as many as two hundred thousand Japanese over the next forty
years and becoming de facto rulers of the Nagasaki region.

All of this alarmed the proponents of Buddhism and raised the distrust
of Hideyoshi himself; he in 1587 took direct control of Nagasaki and issued
two edicts designed to curb the spread of Christianity. But the Spanish
soon arrived, with Spanish merchants vying with Portuguese for trade and
Franciscans vying with Jesuits for converts. In 1596, after a Spaniard sup-
posedly boasted that the missionaries were merely the vanguard of an Ibe-
rian conquest, Hideyoshi ordered the execution of twenty-six priests and
converts. The warlord, though, had other affairs on his mind, in particular
the conquest of China, and he failed to pursue a resolution of the growing
tensions between the Japanese and Westerners.

The tensions were resolved, in a particularly decisive and brutal fashion,
at the very end of Tokugawa leyasu’s life and in the two decades that fol-
lowed. In 1614 Ieyasu reissued an earlier edict with which he summarily
ordered that all Christian missionaries leave the country, that places of
worship be torn down, and that the practice of Christianity be outlawed.
But other internal affairs intervened and Ieyasu died in 1616 without hav-
ing taken much action. After his death, though, persecution of Christian
converts began in earnest and by 1637, according to some estimates, three
hundred thousand converts had apostasized or been killed. Throughout
the 1630s Ieyasu’s grandson, Togukawa Iemitsu, issued a series of decrees
that offered rewards for the identification of kirishitan, forbade the sending
of Japanese ships overseas, and forbade any Japanese from traveling abroad,
on pain of death.

By 1641 the last of the Portuguese merchants had been expelled, leav-
ing only the Dutch. The Dutch had arrived comparatively late to Japan,
in 1609, and had shown more interest in trade than mission. For that
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reason they were allowed to remain after the expulsion of the Iberians.
The Japanese, however, by now utterly suspicious of Westerners, put se-
vere strictures on the Dutch presence: The representatives of the Dutch
East India Company were forced to move onto a small, man-made island
called Deshima in Nagasaki harbor (see color plate 2 and plate 1.2). The
fan-shaped island, originally created for the Portuguese, measured only
200 by 70 meters. A wall surrounded Deshima, posted with signs warning
the Japanese to keep away, and it was entirely cut off from the mainland
except for a bamboo water pipe and a single, guarded bridge. On this
oasis, twenty or so members of the East India Company lived among the
few warehouses, sheep, pigs, and chickens, and awaited the summer ar-
rival of the Dutch ships. Upon making port, captains locked all Bibles
and Christian literature into barrels, while Japanese laborers unloaded
cargo.

_Chat, for the next two hundred years, constituted Japan’s trade with the
West, and so began the policy of what would eventually become known as
sakoku, “closed country.” It is impossible to claim that sakoku was one hun-
dred percent effective; certainly trade with Korea and China continued.
Two Japanese did escape to Holland around 1650 in order to study math-
ematics. We know the scholars only by their adopted names, Petrius Hart-
singius and Franciscus Carron, the former at least having achieved some
distinction. Whether they ever returned to Japan we do not know. One
doctor, Nakashima Chozaburo, traveled abroad with a Dutch trader and
risked beheading to come home. According to tradition, the local daimyo
spared Nakashima’s life because he healed one of the warlord’s injured
pigeons.

Such scraps of information do lead one to believe that by any ordinary
standards the isolation from the West was nearly complete. In terms of
mathematics, it is extremely unlikely that anyone in Japan learned about
the creation of modern calculus by Newton and Leibnitz later in the seven-
teenth century, and there is certainly no evidence from sangaku problems
and traditional Japanese mathematics texts that its practitioners under-
stood the fundamental theorem of calculus.

O ne should not conclude from this state of affairs that sakoku had en-
tirely negative consequences. To the contrary, the policy was so successful
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Plate 1.3. The map shows Japan’s 47 administrative divisions, known as prefec-
tures, which are roughly akin to states or provinces, at least insofar as that each
has a popularly elected government and single-chamber parliament. Prefectures
are further divided into cities (sh¢) and towns (machi). Because prefectures are
usually named after the largest city within their borders, one often sees “Nagano
city” to distinguish it from “Nagano prefecture.” The map also indicates some of
the more important cities mentioned in the text.
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at eliminating foreign conflicts that the 250 years of the Edo period be-
came known as the “Great Peace.” Moreover, with the stability provided by
the Tokugawa shogunate, Japanese culture experienced a brilliant flower-
ing, so much so that the years of the late seventeenth century are referred
to as Genroku, Renaissance. At the time a gentleman was expected to culti-
vate skills in “medicine, poetry, the tea ceremony, music, the hand drum,
the noh dance, etiquette, the appreciation of craft work, arithmetic and
calculation . . . not to mention literary composition, reading and writing.
There are other things as well . . "

We do not have space here to delve into the riches of Genroku culture,
but one should recognize that during this era many of the arts for which
Japan is renowned attained their highest achievements: Noh dance flour-
ished; the great dramatist Chikamatsu Monzaemon (1653-1725) produced
plays for both the Kabuki and puppet theatres; tea ceremonies, flower ar-
ranging, and garden architecture were on the ascendant, as well as paint-
ing in several schools, including the ubiquitous ukiyo-e, or “floating world”
prints that illuminated the demimonde of courtesans and erotic love and
fairly defined the entire epoch. Ukiyo-e prints were made using wood blocks,
not because the Japanese lacked movable type, which had been imported
from Korea during Hideyoshi’s day, but because printers preferred the cal-
ligraphic and artistic possibilities afforded by block printing. Poetry was
not to be eclipsed, especially haiku, which achieved some of its greatest
expression in the works of Matsuo Basho (1644-1694), who long ago
achieved worldwide renown.

What is strikingly absent in the standard reviews of Japanese cultural
achievements of the period is any mention of science or mathematics. And
yet the isolation that produced such a distinctive esthetic in the arts cer-
tainly had no less an impact on these fields. The stylistic form of the impact
on geometry will gradually become apparent to readers who delve into the
mathematical aspects of this book, but it isn’t coincidental that many san-
gaku problems resemble origami designs, nor that the practice of hanging
the tablets began precisely during the Genroku, for, as we will see shortly, it
was in the mid-to-late seventeenth century that traditional Japanese math-
ematics began to flourish.

'See Conrad Totman, Early Modern Japan p. 186 (“For Further Reading, Chapter 1,”
p. 338).
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Plate 1.4. This ukiyo-e, or “floating world,” print is from the series “Thirty-Six
views of Mt. Fuji” by Katsushika Hokusai (1760-1849), one of the most famous
artists of the Edo period. The print shows a distant view of Mt. Fuji from the
Rakan-ji temple in Honjo. The original is in color. (© Nagoya TV-Japan.)

Regardless of the formal developments in mathematics at the time, West-
ern readers invariably want to know how the strange custom of hanging
tablets in shrines and temples arose. In the context of Japan, it was fairly
natural. Shintoism, Japan’s native religion, is populated by “eight hundred
myriads of gods,” the kami, whose spirits infuse everything from the sun
and moon to rivers, mountains, and trees. For centuries before sangaku
came into existence, worshippers would bring gifts to local shrines. The
kami, it was said, love horses, but horses were expensive, and a worshipper
who couldn’t afford to offer a living one might present a likeness drawn on
a piece wood instead. In fact, many tablets from the fifteenth century and
earlier depict horses.



Japan and Temple Geometry

And so it would not have seemed extremely strange to the Japanese to
hang a mathematical tablet in a temple. We cannot say exactly in what year,
or even decade, the tradition began, but the oldest surviving sangaku has
been found in Tochigi prefecture and dates from 1683, while the nineteenth-
century mathematician Yamaguchi Kanzan, whose travel diary we excerpt
in chapter 7, mentions an even older tablet dating from 1668; that one is
now lost. Over the next two centuries the tablets appeared all over Japan,
about two-thirds in Shinto shrines, one-third in Buddhist temples. We do
not know how many were originally produced. From sangaku mentioned in
contemporary mathematics texts, we are certain that at least 1,738 have
been lost; moreover, only two percent of the tablets recorded in Yamagu-
chi’s diary survive. So it is reasonable to guess that there were originally
thousands more than the 900 tablets extant today. The practice of hanging
sangaku gradually died out after the fall of the Tokugawa shogunate, but
some devotees continued to post them as late as 1980, and sangaku con-
tinue to be discovered even now. In 2005, five tablets were found in the
Toyama prefecture alone. The “newest” one was discovered by Mr. Hori Yoji
at the Ubara shrine and dates from 1870. Two problems in chapter 4 are
taken from the tablet and we present a photo of it in the color section, color
plate 13.

Most sangaku contain only the final answer to a problem, rarely a de-
tailed solution. (In Sacred Mathematics we usually give both answers and
solutions, many drawn from traditional Japanese texts.) Apart from con-
siderations of space, there seems to have been a certain bravado involved:
Try this one if you dare! Nevertheless, as you will discover yourself from
reading the inscriptions, the presenters of sangaku also took the spiritual,
and even religious, aspect of the practice seriously, seeing nothing odd in
offering a tablet to God in return for progress in mathematics. But just
who were the creators of sacred mathematics? Sangaku are inscribed in
a language called Kanbun, which used Chinese characters and essen-
tially Chinese grammar, but included diacritical marks to indicate Japa-
nese meaning. Kanbun played a role similar to Latin in the West and its
use on sangaku would indicate that whoever set down the problems was
highly educated. The majority of the presenters, in fact, seem to have
been members of the samurai class. During the Edo period most samu-
rai were not charging around the countryside, sword in hand, but worked
as government functionaries; many became mathematicians, some fa-
mous ones. Nevertheless, the inscriptions on the tablets make clear that
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whole classes of students, children, and occasionally women dedicated
sangaku. So the best answer to the question “Who created them?” seems
to be “everybody.”

While contemplating this lesson, let us paint a fuller picture of the con-
text in which sangaku were created by backing up as far as possible and
briefly exploring the development of Japanese mathematics.

The Age of Arithmetic

The early history of Japan is inextricably bound up with that of China,
from which it imported much of its culture, the Buddhist religion, as well as
its system of government. This is true of Japanese mathematics as well; how-
ever, our knowledge about the state of mathematics in Japan prior to the
eighth century is almost nonexistent. Perhaps the only definite piece of in-
formation from the earliest times is that the Japanese had some system
of exponential notation that could be used for writing high powers of ten,
similar to what Archimedes employed in the Sand Reckoner. Traditionally,
the system was in place before the legendary Jimmu founded Japan in the
seventh century B.C., but the date and the exact nature of the system are
open to dispute.

More concrete information dates only from the onset of the Nara pe-
riod (710-794), when a government was established at the city of Heijo,
today’s Nara, near Osaka. By then the unification of Japan had been in
progress for four hundred years. Buddhism arrived from China in the
mid-sixth century and by the eighth century had becomes extremely pow-
erful, as evidenced by the “Great Eastern Temple” Todaiji that was built
at Nara in 752. At the opening of the eighth century, the Nara rulers estab-
lished a university and prescribed nine Chinese mathematical texts, six of
them from what became known as the Ten Classics. The most important of
these would have been the Jiu zhang Suanshu, or Nine Chapters on the Mathe-
matical Art. The “mathematical art” of the Nine Chapters and the other
books is for the most part arithmetic and elementary algebra; in Japan
they were introduced principally to aid in land surveying and tax collec-
tion. Although their full impact would not be evident for nearly one thou-
sand years, the Chinese texts provided the foundation for all Japanese
mathematics and their importance cannot be overstated. They also offer
an illuminating window onto Chinese society of the time, and the reader
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Plate 1.5. The Great Eastern temple of Todaiji was built in A.p. 752 in Nara,
near Osaka. Today it is one of the most popular tourist destinations in Japan.
(© Todaiji.)

can get a taste of them by sampling the problems from the most influential
classics in Chapter 2.

One impact of the Chinese texts was felt as early as 718. In that year
the government passed the law yoryo ritsuryo, literally “law of the yoryo
age,” by which it created the office of San Hakase, meaning approximately
“Arithmetic Intelligence.” The Department of Arithmetic Intelligence con-
sisted of about 70 midlevel functionaries whose job was apparently to mea-
sure the size of fields and levy taxes. According to the law, the members of
Arithmetic Intelligence were to learn only enough math from the Chinese
books to calculate taxes, and so, although the Japanese became proficient
in arithmetic operations, higher mathematics did not develop at that time.

Calculations of the period were performed by a precursor to the abacus
that consisted of a set of small bamboo sticks known as saunzi in Chinese,
sangt in Japanese. Certain configurations of the sticks represented num-
bers, not dissimilar to the simple strokes that represent roman numerals in

2Yoryo is a proper name that literally means “cherish aged people.”

11
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the West. A member of the Department of Arithmetic Intelligence, intend-
ing to calculate some taxes, would place the sangi on a ruled piece of paper
that resembed a chessboard, and with a series of prescribed operations he
could carry out addition, subtraction, multiplication, division and extrac-
tion of roots, very much in the spirit that Western students performed long
division before the advent of the calculator. (See color plate 3 for a photo
of a sangi set.)

At the time, Japan’s two religions, the native Shintoism and the re-
cently imported Buddhism, coexisted in relative peace. Buddhist temples
in particular—as monasteries did during those centuries in the West—be-
came repositories of learning. In chapter 7 you will have the opportunity to
visit the major Shinto shrines Ise Jingti and Izumo Taisya with mathemati-
cian Yamaguchi Kanzan as he tours Japan collecting sangaku problems. Al-
though they are not mentioned in the part of the diary we excerpt, he also
visited the two great Buddhist complexes of Horyji and Todaiji; at the lat-
ter Japan’s largest statue of the Buddha was constructed with the temple in
752. Next to the temple is a wooden storehouse where a number of histori-
cal documents pertaining to tax collection in the Nara period reside.

These documents, which include maps drawn and signed by the mem-
bers of the Department of Arithmetic Intelligence, reveal some sophisti-
cated bookkeeping, for instance a rather involved expense account for an
inspection of Suruga province® in 738. The San Hakase staff consisted of
two directors, nine subdirectors, six officers, ten clerks, and forty assistants.
A first group, made up of one director, one officer, one clerk, and six help-
ers, inspects one village in twelve days. A second group, made up of a direc-
tor, three subdirectors, three clerks, and twenty helpers, inspects seven
villages and stays four days in each village. There are seven such groups, all
of differing composition, and the total number of people involved is 1,330.
Directors, subdirectors, and officers all get the same daily allocation of
rice, salt, and sake, but clerks and helpers get less. It is a substantial arith-
metic calculation to determine the total expenditure of rice, salt, and sake,
but the Department of Arithmetic Intelligence got it exactly right.

J n order to quiet the various power struggles that plagued Japan during
the Nara period, in 794 the seat of government was moved to Heian-kyo,
“the city of peace and tranquility”— present-day Kyoto. Heian-kyo remained

*Now Shizuoka prefecture.
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the capital until 1192, and for that reason the period is known as the
Heian era. During this relatively stable epoch, Japan began to develop a
culture independent of China, and a writing system independent of Chi-
nese. The most significant developments of the time were in literature:
The Tales of the Genji by Lady Murasaki Shikibu is considered the world’s
first novel, and Sei Shonagon’s diary of court life The Pillow Book has also
achieved renown. Only a handful of names even tangentially connected
with mathematics have come down to us, from the Nara period through
to the seventeenth century, and there are almost no advances to report
for nine hundred years. The Chinese texts written at the time may well
have been imported into Japan but, as in the West, clergy were little inter-
ested in science and mathematics, and as far as mathematics goes it was
very much a dark age.

From the Kamakura period (1192-1333), when the Minamoto shogu-
nate established its government in Kamakura, far from Kyoto, there do
survive a few literary references to sangi, which indicate that they were still
used for arithmetic calculation. For instance, in Kamo no Chomei book
Hosshinsyu (Stories about Buddhism), which was written around 1241 and con-
sisted of one hundred stories, there are two mentions of sangi. One is to
count the number of repetitions of a Buddhist chant; in another story the
author describes houses destroyed by a flood as “like sangi,” because sangi
are scattered on paper. In the anonymous Uji Syui (Stories Edited by the Uji
Minister) from the beginning of the thirteenth century, one of the 197 hu-
morous stories concerns a man who wants to learn how to use the sangi.

Such meager scraps lead us to conclude that sang: continued to be used
for arithmetic calculation, but there as yet appear to have been no develop-
ments in higher mathematics. This state of affairs continued through the
Muromachi period, from 1338 to 1573, which takes its name from the Mu-
romachi area of Kyoto, where the Ashikaga family reestablished the gov-
ernment. During this era, the story goes, one could hardly find in all Japan
a person versed in the art of division. Nevertheless, not only was this an age
when Japan carried out extensive trade with Southeast Asia and rich mer-
chants appeared, but it was also an age of burgeoning culture. At this time,
contemporaneous to the Italian Renaissance, Kanami Kiyotsugu (1333-
1384) invented Noh drama, while his son Zeami Motokiyo (1363-1443)
brought it to the peak of its development. A few hundred years later, Sen no
Rikya perfected the tea ceremony, which concerns far more than the drink-
ing of tea; even today, millions of Japanese study the ritual as a path toward
perfecting Zen principles.

13
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As in the West, the final decades of the sixteenth century in Japan were
far from peaceful. The Ashikaga shogunate came to an end in 1573 when
warlord Oda Nobunaga (1534-1582) drove the last Ashikaga shogun from
Kyoto. The following decades saw Nobunaga’s successor, Toyotomi Hideyo-
shi, with the help of Tokugawa Ieyasu, conquer one province after another,
until by 1590 Japan was finally unified. As it happened, both Nobunaga
and Hideyoshi were great patrons of the arts and helped set the stage for
the cultural blossoming that was shortly to come. Toward the end of his
life, however, Hideyoshi appears to have begun behaving in an erratic
and dangerous fashion, in 1591 forcing his friend and tea master Sen no
Rikyt to commit ritual suicide. Not satisfied with the unification of Japan,
the following year he launched a massive invasion of Korea, which ulti-
mately failed. It did, however, have profound consequences for Japanese
mathematics.

One of Hideyoshi’s soldiers at the port of Hakata, which the warlord
had established as his staging ground for the invasion, had in his posses-
sion an abacus, soroban in Japanese, which evidently came from China.
The soldier’s soroban is in fact the oldest surviving abacus in Japan (see
plate 1.6 on page 15).

Whether or not the soldier’s was actually the first abacus to reach Japa-
nese shores, Japan’s thriving trade at that time with other Asian countries
made the importation of the Chinese suan phan, literally “calculating plate,”
inevitable. We discuss the development of the suan phan in slightly more
detail in the next chapter, but its appearance as the soroban around 1592
revolutionized Japanese mathematics; traditional Japanese mathematics
can be said to have begun with introduction of the calculating plate, aided
by the peace of the Tokugawa shogunate.

The Ascendence of‘tracli’rional
Hapanese Mathematics

The soroban’s advent in Japan also heralded the first record of an identifi-
able Japanese mathematician, Mori Shigeyoshi,* who flourished around
1600. Little more is known about him, except that he lived in Osaka until
the city was taken in 1615 by Tokugawa Ieyasu and thereafter lived in

*In the West usually referred to as Kambei Mori.
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Plate 1.6. Here is the oldest known abacus, or soroban, in Japan. It dates from
about A.D. 1592 and was in the possession of one of Hideyoshi’s soldiers at the
port of Hakata. (© Maeda Ikutokukai.)

Kyoto. There are stories, almost certainly untrue, that Mori himself
brought the soroban from China, but in any case he was an expert at its use
and did more than anyone at the time to popularize numerical calcula-
tions. In 1622 Mori published a small primer Warizansyo, or Division Using
the Soroban.®

Mori himself was in possession of a Chinese book on the soroban, Cheng
Da-Wei’s famous Suanfa Tong Zong, or Systematic Treatise on Arithmetic, which
was published in China in 1593 and made its way to Japan shortly after-
ward, in other words, at the same time as the soroban itself. Cheng’s book
(see Chapter 2) had a great influence on the course of Japanese mathemat-
ics independently of Mori’s work. Not only was a Japanese edition published
in 1676 by Yuasa Ichir6zaemon (?-?), but already, in the 1620s, Yoshida
Mitsuyoshi (1598-1672) studied the Suanfa Tong Zong closely, changing
problems to suit Japan and adding many illustrations. Thus was born his

5The actual title of the booklet is uncertain because the title page is lost.
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Jinko-ki, or Large and Small Numbers, which appeared in 1627, becoming the
first complete mathematics book published in Japan.

The title finko-ki originated from an old religious book of the twelfth
century, Ryojin Hisho, or Poems of Those Days. Yoshida’s Jinko-ki mostly con-
cerned computational algorithms for which we use a calculator today,
such as the extraction of square and cube roots. The book achieved im-
mediate and enduring popularity, running through about three hundred
different versions over the next three centuries. There was the New Jinko-
ki, the Treasure of Jinko-ki, the The Concise Jinko-ki, the The Riches of Jinko-
ki. . .. Of course, most were ghost written, literally, but Yoshida did publish
at least seven editions himself. In the 1641 version, he presented some
open problems for readers to solve. When readers provided the answers,
he published the next edition adding more open problems, and so on. In this
way many Japanese mathematics books were published, the readers con-
tributing their solutions.

One of the problems treated in the Jinko-ki concerned the calculation of
7. In response, mathematician Muramatsu Shigekiyo (1608-1695) pub-
lished Sanso, or Stack of Mathematics, in which he uses a 2'°- or 32,768-sided
polygon to obtain 7= 3.14195264877. Nineteen hundred years earlier, Ar-
chimedes had arrived at his value of 7 by inscribing an n-sided polygon
within a circle and approximating the circumference of the circle by the
perimeter of the polygon. The more sides, the more accurate the approxi-
mation, and the better the value of 7.°® Muramatsu used essentially the
same technique, as did his contemporary Isomura Yoshinori (1640?-1710),
who employed a 2'7 = 131,072-sided polygon inscribed in a circle of radius 1
and obtained 3.141592664 for the perimeter. For some reason he wrote only
= 3.1416.

The most famous mathematician of the age, Seki Takakazu’ (16407
1708) also took up the challenge to calculate 7. Using his own method,
which was published posthumously by his disciples in the 1712 Katsuyo Sanpo,
or Collection of Important Mathematical Resulls, he obtained 7 =3.14159265359,
which is correct to the eleven digits calculated. Seki’s disciple Takebe Kata-
hiro (1664-1739) succeeded in obtaining a value of 7 correct to 41 digits.

SMore precisely, Archimedes bounded 7 by placing the circle between two polygons,
knowing that the circumference of the circle was greater than the perimeter of the in-
scribed polygon and less than the perimeter of the circumscribed polygon. Employing
96-sided polygons, he achieved a numerical value of 3 10/71 < w< 3 1/7.

"Usually known in the West as Kowa Seki.
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Plate 1.7. From a 1715 edition of the Jinko-ki, this woodblock print illustrates the
advantages of using an abacus in business transactions. (Collection of Fukagawa
Hidetoshi.)
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Plate 1.8. A soroban exercise from a later edition of the Jinko-ki, c. 1818-1829.
(Collection of Fukagawa Hidetoshi.)
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Because of their importance, we devote much of chapter 3 to the Jinko-ki,
Seki, and the various calculations of 7.

_Che start of traditional Japanese Mathematics is usually dated from the
publication of the finko-kiin 1627. The Nine Chapters, Cheng’s Treatise, and
the other Chinese classics continued to exert their influence on Japanese
mathematics, either directly or through translations, but with the onset of
sakoku the development of Japanese mathematics rapidly became indepen-
dent of China. Strangely, though, the Jinko-ki did not herald the immediate
death of the sangi. The soroban did quickly replace sangi in everyday busi-
ness calculations, but it was not so well suited for complex algebraic opera-
tions, in particular the solution of high-degree equations, of which Japanese
mathematicians became very fond. As a result the sang: persisted side by
side with the soroban well into the nineteenth century.

The samurai posed a major problem for the peace of the Edo era. Cen-
turies of warfare had turned them into barely literate brutes who needed
to be pacified and civilized. The Tokugawa expended much effort in this
direction, with the result that within several generations the samurai
were transformed into a highly educated class, literate and versed in the
finer things of life, as a European noble of the time would be. Most of the
warriors, having lost their jobs so to speak, became ordinary civil ser-
vants. For three or four days a week a samurai might go to the provincial
castle to work, but the salary was so terrible that he often had to take on
a side job.® During the Edo period there were no universities in Japan.
Consequently, many samurai moonlighted as teachers in small private
schools called juku, which were devoted to the three R’s: reading, ’riting,
and ’rithmetic, the last “r” standing for soroban. Whereas in previous ages
samurai visited villages to levy soldiers, now their visits were less frequent,
and farmers found they had to calculate the area of their fields by them-
selves. As a result, they also began to attend the juku, which was made
possible by a low attendance fee. With people from every caste—from the
rich to the poor, from samurai to farmers—going to school, juku began
to flourish. The roster at one school, the Yoken juku, shows that 2,144
students, including many adults, attended it over the course of fifty years.

8The Tokugawa shogunate limited local warlords to one castle per domain and, with lit-
tle fighting during the entire Edo period, previous military strongholds, “castle towns,” be-
came administrative centers. Mathematician Yamaguchi Kanzan speaks of them frequently
in his diary, chapter 7.
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Plate 1.9. The Yoken juku, where mathematician Sakuma Yoken (1819-1896)
taught 2,144 students over a half-century. (Tamura city.)

Their teacher was mathematician Sakuma Yoken (1819-1896), and the
small wooden school room still stands. A recent study? indicates that, by
the nineteenth century, late in the Edo period, about 80,000 juku existed
throughout Japan. Although, as in the West, children were considered la-
borers, not students, the home-grown schooling provided by the juku
resulted in a literacy level that was high compared to other countries at
the time.

Many mathematicians, usually samurai who had received “Master of
Mathematics” licenses, visited these rural schools to teach mathematics—

9Ohishi Manabu, http:/library.u-gakugei.ac.jp (in Japanese).
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and evidently more than simple 'rithmetic. For it was from this milieu, iso-
lated from the Western world and increasingly divergent from China, that
wasan, literally “Japanese mathematics,” arose. Ordinary people at the
juku, who could not afford to publish their own books, took up the ancient
custom of bringing votive tablets to temples and began to hang sangaku,
in this way both making a religious offering and advertising their results.
Incidently, they created wonderful art.

Sangakuwere not the only medium for disseminating geometry. The Kore-
ans had been printing books with movable type 100 years prior to Guten-
berg,'’ and both Korean and European presses had found their way to Japan
before the opening of the seventeenth century. As mentioned, however,
printing by wooden blocks on rice paper became the favored method of pro-
ducing books in Japan, and, by the end of the seventeenth century, a plethora
of mathematics texts had begun to appear, many of which contained prob-
lems from or identical to those found on sangaku. Sometimes these texts
provide solutions not written on the tablets, and we often quote from them
in the solution sections of our own book. Many of the illustrations found
throughout Sacred Mathematics also come directly from rice-paper books,
originally printed in the seventeenth through nineteenth centuries.

Thus, by the end of the seventeenth century, wasan, traditional Japanese
mathematics, was firmly established. It would be over the next two hundred
years, however, that traditional methods produced their most striking and
original results.

The Flowav‘ing and Decline of Traditional
Eapanese Mathematics

It was the eighteenth and nineteenth centuries, as Japan’s isolation deep-
ened, that saw the greatest number of traditional Japanese mathematics
texts published, the most interesting theorems proved, and most of the san-
gaku problems created.

The majority of results obtained by traditional Japanese mathemati-
cians were not path breaking by Western standards, partly because Japan

101f, indeed, Gutenberg used movable type. See Tony Rothman, Everything’s Relative and
Other Fables from Science and Technology (Wiley, Hoboken, N.J, 2003).
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never developed a fully fledged theory of calculus. Traditional Japanese
mathematicians found the areas and volumes of geometric figures in much
the same way Eudoxus and Archimedes did in ancient Greece (and much
as we do numerically today with computers). For example, one can divide
up a circle into rectangular strips, as in plate 1.10. The narrower the strips,
the more closely the area of the strips will approximate that of the circle.
By letting the width of the strips go to zero, one can get an exact formula
for the circle’s area. This idea served as the basis of the Enri (“Yenri”), a
vague term meaning “circle principle,” but which amounts to what calcu-
lus students know as definite integration. And, as students know, there are
any number of methods for computing the area of geometric figures by
slicing up those figures in a convenient way and letting the width of the
slices go to zero. One can do this informally for each situation, without
proving the theorems about limits that students detest, but unless you
have those theorems, in particular the first and second fundamental theo-
rems of calculus, you are restricted to performing so-called “definite” inte-
grals, and do not have a theory for doing integration in general, that is, for
performing “indefinite” integration. This was more or less the situation in
traditional Japanese mathematics. We discuss it more fully in chapter 9.

Despite such drawbacks, one cannot accuse the Japanese mathemati-
cians of lacking ingenuity. Seki developed a theory of determinants before
Leibnitz, and other Japanese geometers proved a handful of famous theo-
rems prior to their Western counterparts, or at least independently of
them. We’ll encounter some of these in chapter 8. They include the Des-
cartes circle theorem, the Malfatti problem, the Casey theorem, the Soddy
hexlet, and a few others.

Additionally, the Japanese were extremely skilful at handling equations
of high degree. We do mean high degree. In Yamaguchi’s diary, we will run
across a famous problem, the Gion shrine problem, which involves an equa-
tion of the 1,024th degree. (And students fear quadratics!) The mathemati-
cian Ajima Naonobu!! (1732-1798) became famous for reducing the problem
to one of the tenth degree, which was then solved numerically. Ajima
proved a number of difficult theorems in geometry, which we discuss in
chapter 3, and also came the closest of the Japanese mathematicians to
producing a full theory of definite integration.

Ajima’s work built on that of his predecessor Matsunaga Yoshisuke (16927—
1744), who studied infinite series and their applicability to the calculation of

"Sometimes known as Chokuyen Ajima.
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Plate 1.10. From Sawaguchi Kazuyuki’s 1671 book Kokon Sanpoki, or Old and New
Mathematics, this figure illustrates how to approximate the area of a circle by
slicing it into rectangular strips. In a first-year calculus course one calculates the
area of a circle in the same way—by slicing up the circle, and adding up the area
of the strips in the limit that their width goes to zero. (Aichi University of
Education.)
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areas through integration. They were followed by Wada Yasushi (1787-1840),
who lived in poverty and produced a number of tables of definite integrals.
Uchida Kyo (1805-1882) studied integration in Wada’s juku. He then pro-
duced aseries of books that treat integration of solids, including areas formed
by the intersection of cylinders, spheres, and so on. You will be challenged to
try this sort of problem in chapters 5 and 6.

As we have said, many sangaku problems also appeared in traditional
Japanese texts. Fujita Sadasuke (1734-1807) published a book Seiyo Sanpo
(Detailed Mathematics), and his son, Fujita Kagen (1772-1828), carried on
the tradition by publishing Shinpeki Sanpo, rendered sometimes as Mathe-
matics of Shrines and Temples and sometimes as Sacred Mathematics, the first
collection of sangaku problems. (See color plate 14 for a portrait of Fujita
Kagen.) A few famous problems appearing in the present Sacred Mathemat-
ics have been taken from those works.

72'\5 the centuries progressed, a few hints of Occidental mathematics
seeped in to Japan via China and the Dutch at Nagasaki. For example,
the Japanese evidently learned of logarithms from a 1713 Chinese pub-
lication, the Su-li Ching-Yin. Nevertheless, even in 1824, a Japanese math-
ematician seemed surprised to learn of a drawing in a Dutch work that
showed an ellipsograph—a mechanism for drawing an ellipse known in
the West at least since Leonardo da Vinci. By the mid-nineteenth cen-
tury one does find manuscripts containing both Eastern and Western
notation.

But wasan held its ground until, as a direct consequence of the opening
of Japan to the West by Perry, the Tokugawa family lost power in 1868. The
new Meiji government decided that, in order for Japan to be an equal part-
ner to foreign nations, it must rapidly modernize. Their program included
mathematics. Governmental schools were established all over Japan and in
the 1872 Gakurei, or “Fundamental Code of Education,” the Meiji leaders
decreed that “wasan was not to be taught at school, but Western mathemat-
ics only.”

Due to the juku, mathematics had been flourishing in Japan and West-
ern mathematics—yosan—proved easy to introduce and was quickly ad-
opted. Of course, diehards fought back. One of the last samurai, Takaku
Kenjiro (1821-1883), wrote, “Astronomy and the physical sciences as found
in the West are truth eternal and unchangeable, and this we must learn; but
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as to mathematics, there Japan is leader of the world.”? In the end, resis-
tance was futile. With the Meiji Fundamental Code, teachers of traditional
mathematics lost their jobs and wasan was destined to perish. From a strictly
mathematical point of view, its death is perhaps not to be mourned over-
much, but from an esthetic point of view we surely lost something when lov-
ers of traditional mathematics finally ceased creating their beautiful problems
and the tablets that they offered to the world. We can only be grateful for
what remains.

12Smith and Mikami, p. 273 (“For Further Reading, Chapter 1,” p. 338).
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Plate 2.1. This illustration of a man measuring the height of a tree using basic
trigonometry is from an edition of the Jinko-ki published between 1818 and 1829, but,
like most of the problems in the Jinko-ki, it was passed down from Chinese sources.
The problem asks for two ways a woodsman can use trigonometry and/or a stick of
known length to measure the height of a tree. Compare problem 2-3 in this chapter.
(Collection of Fukagawa Hidetoshi.)
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The Chinese Foundation of
Japanese Mathematics

J have heard that the Grand Prefect
is Versed in the art of numbers, so let
me ask you: In times of old Fu-Hsi
measured the heavens and regulated
the calendar. But there are no steps
by which one may ascend the heav-
ens, and the earth is not measurable
with a foo’r—v*m|e. J should like to ask,
what was the origin of these numbers?

—Trom the Zhou bi suan Jing

‘to understand the development of Japanese mathematics is to appreci-
ate the Chinese mathematics that so strongly influenced it. In this chapter
we give a brief survey of ancient and medieval Chinese mathematics, and
then present some problems from the classic Chinese texts. The problems
are of interest not only because they give an idea of the state of Chinese
mathematics of past ages, but because they offer a tantalizing glimpse into
a society whose daily life revolved around rice, horses, business, and the
abacus. There are occasional tricks to these problems, but for the most part
they should not be difficult for middle or high school students.

_Che earliest of the great books on mathematics is the Zhou bi suan jing,
loosely The Arithmetical Classic of the Gnomon and the Circular Path of Heaven.
The author and the date of the Zhou bi are unknown to us. All evidence in
fact indicates that scholars added to the original as it passed through the
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centuries. A famous dialogue at the start of the Zhou bi takes place between
a prince, Zhou-Kong, and his learned minister, Shang Kao. Zhou-Kong
died in the year 1105 B.c., but his appearance as one of the participants in
the dialogue is less an indication of the date of its composition than of po-
etic license. Most scholars have believed the book reached completion by
the second or third century B.c., although some recent investigations have
suggested that it did not assume its final form until the first century A.p.!
The Zhou bi is not a mathematics text that today’s students would recog-
nize. Mathematical notation was almost nonexistent and most concepts are
stated in words. There is some discussion of the gnomon, a vertical stake
thrust into the ground whose shadows can be used to measure the height
of the sun. Generally, the Zhou bi is much concerned with astronomy and
calendar making, and it includes maps of the stars near the celestial Pole.
On the other hand, the Zhou bi does make use of fractions, discusses their
multiplication and division, and, although the extraction of square roots is
not explicitly worked out, the text makes it clear that square roots were used.
Of greatest interest for us is that, at the beginning of the book, in the dia-
logue between Zhou-Kong and Shang Kao, one finds a discussion of the
3-4-5 right triangle. Although couched in difficult language, it is clear that
the Chinese understood the Pythagorean theorem, that the sum of the
squares of two sides of a right triangle equals the square of the hypotenuse.
But there is no general proof of the theorem. This part of the Zhou bi is
thought to be the oldest and dates from about the sixth century B.c.—roughly
the same time Pythagoras is said to have discovered the theorem in Greece.

From our perspective a more substantial work is the fiu zhang Suanshu, or
Nine Chapters on the Mathematical Art. Once again, the date and author are
unknown, although most experts seem to believe it was finished by the late
second or early third century A.p. The nine chapters of the Jiu zhang chapters
contain a total of 246 problems concerning surveying, engineering, and tax-
ation, among other things, which employ fractions, “geometrical” and “arith-
metic” progressions, and the solution of simultaneous equations. The eighth
chapter, depending on the date, may contain the first mention of negative
numbers, and the final chapter is “Gou Gu,” or the “Width and Height of
Right-Angled Triangles,” in which twenty-four problems on the Pythagorean

'See “Further Reading,” this chapter, Ronan, Science and Civilization, chap. 1; Cullen,
Astronomy and Mathematics, chap. 3 (“For Further Reading, Chapter 2,” p. 338).
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Plate 2.2. This figure from the Zhou bi suan jing
shows that the Chinese understood the Pythago-
rean theorem early on, but no general proof of the
theorem appears.
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theorem are introduced. We give a few of these below. In this chapter is also
an early statement of the quadratic equation and the quadratic formula for
solving them. It may not be the earliest, because according to some histori-
ans the Egyptians began studying quadratics prior to 2000 B.c.

It is worth mentioning that, although we speak of the the Nine Chapters
as a “book,” its contents were evidently recorded on bamboo sticks, each
about 2 cm wide and 25 cm long. In July 2002 Japanese newspapers re-
ported the excavation of about twenty thousand wooden and bamboo sticks
dating from 221-206 B.C., on some of which were inscribed multiplication
tables. The date makes them contemporaneous with the older Zhou bi suan
jing. Nevertheless, although paper came into use in China after about A.D.
105, the later Nine Chapters also seems to have been “printed” on bamboo.

—Che Jiu zhang Suanshu was the most influential of the ancient Chinese
texts, leading to a number of other books that acquired their own renown
over the centuries. One of these was the Sun-T5u Suanjing, or Arithmetic Clas-
sic of Sun-Tsu. (This Sun-Tsu (often Sun-Zi) is sometimes confused with the
celebrated tactician who authored the military classic The Art of War, but
that one is believed to have lived in the sixth to fourth century B.c., while
Sun-Tsu the mathematician probably flourished in the fifth century A.p.)
Between A.p. 618 and 901, the Zhou bz, the Jiu zhang, and the Sun-T5u were,
with seven other books, considered by the Chinese government to be
textbooks, and from 1078 to 1085 they were published together as the Ten
Classics.
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Several more important Chinese books appeared in the thirteenth cen-
tury. One, the 1247 Shushu Jiuzhang, or Mathematical Treatise in Nine Chapters
of Qin Jiushao (Chin Chiu-Shao), contains the “heaven origin unit” 1, as
well as the symbol zero and a clear distinction between positive and nega-
tive numbers. Although the title refers to the original Nine Chapters, Qin
Jiushao’s nine chapters are not the same. More important for traditional
Japanese mathematics was the 1299 Suanxue Qimeng, or Introduction to Math-
ematical Studies by Zhu Shijie (Chu Shih-Chieh), from which we excerpt
some problems as well.

7As discussed in chapter 1, at the opening of the eighth century, the
Japanese government introduced the Nine Chapters and eight other books
into the university system as mathematics texts. Some of the later books
may also have found their way to Japan before the seventeenth century,
but there is little evidence one way or the other. It is only at the time of
the importation of the Chinese abacus, the suan phan, that information
becomes more definite. The origin of the suan phan is also shrouded in
the mists of time and debate. The first complete modern description of
the “calculating plate” is found in Cheng Da-Wei’s 1593 Suanfa Tong Zong,
or Systematic Treatise on Arithmetic. The late date has led some to historians
to argue that the abacus was unknown in China until relatively modern
times, but other convincing descriptions date from 1513, 1436, and even
the sixth century or earlier. A figure of the suan phan was published in
a Chinese mathematics book, the KuiBen DiuXiang SiYan ZaZi, or Leading
Book of Four Words in Verse of 1371,% so it seems clear that the abacus
was complete by that date. A reasonable hypothesis is that the calculating
rods discussed in chapter 1, the suanzi, gradually morphed into the
abacus.

Cheng Da-Wei’s Treatise had a great impact on both Chinese and Japa-
nese mathematics. Cheng (1533-1606) himself was a local government of-
ficial who needed to know how to use the suan phan, and at the beginning
of his book he included two chapters on basic calculations and use of the
abacus. To the nine subsequent chapters he gave the same names as those
of the nine chapters of the Jiu zhang Suanshu, although Cheng includes
magic squares, musical tubes, formulas given in verse, and practically any-

2See Li Di, Chinese Mathematics. See also Martzloff, Chinese Mathematics, p- 215. He gives
1377 as the probable date. (“For Further Reading, Chapter 2,” p. 338.)
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thing else he can think of. The book remained popular in China for centu-
ries, and was, apparently, still in print as late as 1964, when old people
could still be found capable of reciting the versified formulas.?

With such renown in China, it is hardly surprising that Cheng’s book
soon changed the course of Japanese mathematics. We have already seen
that the Treatiseled directly to both Mori Shigeyoshi’s Division Using the Soro-
ban and Yoshida’s phenomenally successfully finko-ki. The influence of
Cheng’s Treatise, as well as the other Chinese classics, continued well into
the nineteenth century. In 1676 Yuasa Ichir6zaemon published a Japanese
edition of the Treatise. Twenty years earlier, in 1658, Haji Doun (?—?) pub-
lished a Japanese edition of Zhu Shijie’s 1299 Introduction, and in 1690
Takebe Katahiro (1664-1739) published an enlarged edition of the same
work. He called it Sangaku Keimo Genkai Taisei, or Annotation of the Suanxue
Qimeng. As late as 1824, the Japanese mathematician Kitagawa Moko (1763—
1833) intended to publish a translation of the original fiu zhang, but he
failed to do so, leaving only a manuscript.

‘to give a better idea of the flavor of the great Chinese works, which to
this day are not well known in the West, we now present problems from
several of them. A considerable amount of borrowing took place from one
author to the next. We have eliminated most of the repetition, but that
there remains some similarity among the problems across the centuries
reflects the reality of the practice, not a lack of editing. You will also notice
that chapter titles do not always correspond closely to the problems con-
tained within them. When not with the problems themselves, the answers
can be found at the end of the chapter.

1. Jiu zhang Suanshu, or Nine Chapters
on the Mathematical Awrt

The nine chapters of this famous book contain a total of 246 problems.
We present one from each chapter. Most of those below are very easy and

$Martzloff, Chinese Mathematics, p. 160 (“For Further Reading Chapter 2, p. 338). One
should also point out that in the West as well, before equations became widespread, it was
common to learn formulas or algorithms by memorizing verse.
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we hope cause no great difficulty for modern students. In looking at the
form of the solutions, which usually contain fractions, it helps to realize
that, in ancient Chinese mathematics, fractions were used exclusively to
represent nonintegral numbers; there were no decimals.

Problem 1-1
(From chapter 1 of the Jiu zhang: “On Measuring Various Fields.”)
We walked around a circular field and obtained for the circumference 181 bu
(=208.15 m) and for the diameter is (60 + 1/3) bu (= 69.38 m). Find the value of

7t = circumference/diameter and the area of the field in the form of fractions.*

Solution: Since m=181/(60+1/3) = 3, the areais A= m? =3 x (181/6)2 = 32761/12 = 2730
+1/12 bu= (11 +90/240) se+ 1/12 bu= 11 se+ (90 + 1/12) bu.

In his A.D. 263 revision of the Nine Chapters, annotator Liu Hui (220-2657) noted that
w=157/50 = 3.14 was better than 7= 3. Another problem from chapter 1 of the Nine
Chapters was quoted by Yoshida in his finko-ki, and we give it as problem 1 in chapter 3.

Problem 1-2
(From chapter 2 of the Jiu zhang: “Proportions.”)
In general, a fair exchange is 50 sko of millet for 27 sho of rice. Here is 21 sho of millet.

How many sho of rice will we obtain in exchange?

Solution on page 53.

*In this chapter we generally use original units, for example the bu rather than the me-
ter. To change the original numbers into values consistent with modern units becomes very
confusing. If readers wish, however, they can go from traditional Chinese units of the sec-
ond century B.C. through the second century A.Dp to modern units by using the following
conversions:

For lengths: 1 sun=2.3 cm; 1 syaku=10 sun=23 cm;
1 bu=5 syaku=1.15 m; 1jo=2 bu=10 syaku=2.3 m;
1 ri= 360 bu=414 m.
For areas: 1 bu=32 m?; 1 se=10 bu= 240 bu= 317 m>.
For volumes: 1sho=0.21 1t0=10 sho=21
1 koku =10 to=20 L.
For weights: 1 sho=0.58 g; 1 ryo=24 sho=13.9 g;

1 kin=16 ryo=222.4 g; 1 koku =120 kin=26.688 kg.
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Problem 1-3
(From chapter 3 of the Jiu zhang: “Distribution.”)
Here is an expert in weaving. She wove a certain amount of cloth on the first day, twice
as much on the second day, double that on the third day, and so on. In five days she wove
a total of b syaku of cloth. What was the length she wove on the first day?
This problem was quoted in the later Sun-Tsu Suanjing.

See page 53 for solution.

Problem 1-4
(From chapter 4 of the Jiu zhang: “On Calculating the Area of a Field.”)

Let the area A of a rectangular field be 240 square bu, where x bu is the width and y bu
is the length.5 For each x below, find y in terms of fractions:

1) x=1

(2) x=1+1/2.

(3) x=1+1/2+1/3.

4) x=1+1/2+1/3+1/4

(B) x=1+1/2+1/8+1/4+1/5

6) x=1+1/2+1/3+1/4+1/5+1/6.

The answers can be found on page 53.

Problem 1-5
(From chapter 5 of the Jiu zhang: “On Values of Various Solids.”)

Next to the river, we raised a bank of earth 127 syaku long with a lower width of 20 syaku,
an upper width of 8 syaku and a height of 4 syaku.

(1) Find the volume of the earth bank.

(2) In winter, one worker can carry in a total of 444 cubic syaku of earth. How many work-
ers are needed to build the bank in one season?

Solution on page 53.

®Note in the conversions that bu was traditionally used as both a length and an area. We
will refer to “square bu” for area, and similarly for other units.
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Problem 1-6
(From chapter 6 of the Jiu zhang: “Wages.”)

One day a traveler started off on a journey, bringing with him a certain amount of kin®
for the purpose of paying taxes. As he traveled, he had to pass through five check points
A, B, C, D, and E. Passing through point A, he paid half the money he had brought for
taxes. When he passed the point B, he paid a third of what was left of his tax money. At C
he paid a fourth of the tax money that remained after B, and similarly at check points D,
and E. At the end he found he had paid a total of 1 kin as tax. How much tax money did
he have to start with?

See page 53 Jfor solution.

Problem 1-7
(From chapter 7 of the Jiu zhang: “Extra and Lack.”)

A melon stem grows 7 sun a day. A creeper stem grows 10 sun per day. In the same day,
the melon stem grows down from a point on a cliff that is 90 sun high, and the creeper
grows up from the bottom of the cliff. After how many days will the two stems meet?

The solution can be found on page 53.

Problem 1-8
(From chapter 8 of the Jiu zhang: “Square,” or “On Systems of Linear Equations.”)

Assume that each stalk on rice plants A, B, and Cproduces a, b, and ¢ to of rice, respec-
tively. Now, the total amount of rice from three stalks of A, two stalks of of B, and one
stalk of Cis 39 fo. The total amount from two stalks of A, three stalks of of B, and one
stalk of Care 34 to, and the total amount from one stalk of A, two stalks of of B, and
three stalks of Cis 26 to. Find a, b, and c.

The solution can be found on page 54.

Problem 1-9
(From chapter 9 of the Jiu zhang: “Gou Gu,” or “Right-Angled Triangles.”)

6kin is the traditional unit of both money and weight (see previous footnote), but we do
not know the value of one kin in terms of modern currency. In old China, 1 kin =16 ryo, and
1 ry0 =24 sho, and the original result of problem 1-6, 6/5 kin, was represented as 1 kin, 3 ryo,
and 4 + 4/5 sho, since 6/5=1+3/16+ (1/16)[(1/24) (4 + 4/5)].
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A bamboo stalk 10 syaku high is broken at a point Q) so that the top
of the stalk falls over and touches the ground at a point 7. The dis-
tance from the root Pto 7T'is 3 syaku. Find the distance PQ.

This is a famous problem, which first appeared in the Jiu zhang and then
in a number of Chinese books, including Yang Hu’s Xiangyie Jiuzhang Suanfa
of A.p. 1261, and Cheng Da-Wei’s 1593 Suanfa Tong Zong:

The answer follows directly from the Pythagorean theorem: If x is the
distance PQ, then x* + 3% = (10 — x)2. Solving for xgives x=91/20 = 4 + 11/20

syaku.
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2. Sun-Lsu Sualf\jing, or the Arithmetic Classic
of Sun-TTsu, c. Fiﬁ[/\ Century A.D.

Sun-Tsu’s book, whenever it was written, consisted of three volumes. The
first is full of problems in elementary arithmetic, which we do not present
here. We do, however, present a half-dozen interesting problems from the
second and third volumes. One of these is famous as the “Chinese remain-
der theorem,” which we give as problem 2-6 below.

Problem 2-1
We built an earth bank 5550 syaku long with an upper base 20 syaku long, a lower base

54 syakulong, and a height of 38 syaku. A worker can carry 300 cubic syaku of dirt in one
season. How many workers are needed for building the bank?

As you can see, this problem was taken from the fiu zhang (problem 1-5 above) and is
solved in the same way. The solution is on page 54.

Problem 2-2
Some thieves stole a long roll of silk cloth from a warehouse. In a bush far from the

warehouse, they counted the length of the cloth. If each thief gets 6 hiki, then 6 hikiis left
over, but if each thief takes 7 hiki then the last thief get no cloth at all.” Find the number
of thieves and the length of the cloth.

Answer: If Nis the number of thieves and L is the length of the cloth, then the first
condition tells us that 6N= L — 6. The second condition says L=7(N- 1). Solving these
two equations gives N= 13 and L = 84 hiki.

The problem of the silk thieves also appeared in Yoshida’s Jinko-ki of 1631.

Problem 2-3
We want to measure the height of a tree whose shadow is 15 syaku long. Near the tree,

we erect a small stick 1.5 syaku tall and measure its shadow to be 0.5 syaku long. Find the
height of the tree.

"The hikiis another traditional unit of length, used for measuring cloth; 1 Aiki= 4.7 m.
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Plate 2.4. Ruthless thieves
stealing a roll of cloth
appeared in the Jinko-ki of
1643, but the problem was
taken from the Sun-Tsu
Suanjing. We present it here
as problem 2-2.

This problem appeared in the original Jinko-ki of 1627 as well. The solution is on page 54.

Problem 2-4
In a cage, there are some roosters and hares. The total number of necks is 35 and the

total number of feet is 94. How many roosters and hares are in the cage?

The roosters and hares appeared in the Inki Sanka of 1640 (chapter 3) and as cranes and
turtles in the 1815 Japanese book Sanpo Tenzan Shinanroku by Sakabe Kohan (1759-1824).
The solution is on page 54.

Problem 2-5
On the top of a gate, one can see nine banks; on each bank there are nine trees, each

of which has nine branches. On each branch, there are nine nests, in each nest live nine
adult crows, each of which has nine chicks. Each chick has nine feathers and each
feather has nine colors. How many trees, branches, nests, crows, chicks, and colors are
there?

Answer on page 54.
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Problem 2-6
(This is the Chinese remainder theorem.)

Here is an unknown number of objects. If they are counted in threes, then two are
left; if they are counted in fives, three are left; if they are counted in sevens, two are left.
How many objects are there?

This is the prototype of a famous problem that appeared in many guises around the
world. A typical, apparently medieval, version is: “An old woman goes to market and a
horse steps on her basket and crushes the eggs. The rider offers to pay for the damages and
asks her how many eggs she had brought. She does not remember the exact number, but
when she had taken them out two at a time, there was one egg left. The same happened
when she picked them out three, four, five, and six at a time, but when she took them seven
at a time they came out even. What is the smallest number of eggs she could have had?”®

Sun-Tsu’s version is important because it provides a method of solution equivalent to that
given in modern number theory courses. His original solution? goes something like this:

Answer: 23.

Rule: If they are counted in threes, two are left: set 140. If they are counted in fives,
three are left: set 63. If they are counted in sevens, two are left: set 30. Take the sum
of these [three numbers] to obtain 233. Subtract 210 from this total; this gives the
answer.

In general: For each remaining object when counting in threes, set 70. For each remaining
object when counting in fives, set 21. For each remaining object when counting in sevens, set
15. If [the sum obtained in this way] is 106 or more, subtract 105 to obtain the answer.

Applying the general instructions to this case means that the answer is
2x70+3x21 +2x15-210=23.

Let us decode Sun-Tsu’s prescription. If there are N objects, then “count-
ing in threes” means simply to subtract three at a time until, in this case,
two remain. In other words, long division of Nby 3 yields a remainder of 2.
Students of algebra will know that a more sophisticated way of saying this is
that N=2(mod 3) (read “N equals 2 mod 3”). In general, x=r(mod m),
means that m goes into x an integral number of times with a remainder of
r. For example, 38 =2(mod 12), since 12 goes into 38 three times with a
remainder of 2. By the same token, 50 = 2(mod 12), since 12 goes into 50
four times with a remainder of 2. In Sun Tsu’s problem we have

8 Oyestein Ore, Number Theory and Its History (Dover New York, 1976), p. 118.
9See Martzloff, Chinese Mathematics, p. 310. (“For Further Reading, Chapter 2,” p. 338).
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N=2(mod 3),
N=3(mod b),
N=2(mod 7). (1)

Thus in modern guise the problem reduces to finding an integer solution
Nto three simultaneous equations in modular form. There may be (and in
this case certainly are) more than one N that satisfies the three relation-
ships; presumably we want the smallest.

We find the solution in a pedestrian manner. Notice that the first num-
ber in Sun Tsu’s prescription is 2 x 70 = 140 = 2(mod 3). But notice also
that 140 + 63 = 2(mod 3) as well. That is, 63 is exactly divisible by 3, so
adding 63 to 140 does not affect the remainder. For the same reason
140 + 63 + 30 = 2(mod 3). Similarly 63 = 3 (mod 5), but since both 140 and
30 are divisible by 5, 140 + 63 4+ 30 = 3(mod 5). Finally, 30 =2(mod 7) =
140 + 63 + 30.

Thus, we see that the sum N= 140 + 63 + 30 = 233 satisfies all three equa-
tions (technically known as congruences). However, 233 is not the smallest
possible N. The least common multiple of 3, 5,and 7is 105, and so 2 x 105 = 210
is also divisible by all three factors; adding or subtracting it will not affect any
remainder. Consequently, we want N= 233 — 210 = 23, Sun-Tsu’s answer. The
last step is what he meant when he said that if the answer is 106 or more, sub-
tract 105; in fact subtract the nearest multiple of 105.

You are undoubtedly wondering where Sun-Tsu got the numbers 2 x 70,
3x 21, and 2 x 15. This part is educated guesswork. First we multiply to-
gether the divisors of the last two of equations (1) to get 5 x 7 =35. We
then look for a multiple of 35 that satisfies the first equation. Clearly 140
does. (You might notice that 35 itself does; explain why we do not want this
solution.) Next we search for multiples of 3 X 7 = 21 that satisfy the second
equation, and multiples of 3 X 5= 15 that satisfy the third equation. This
explains the origins of Sun-Tsu’s numbers.

Sun-Tsu’s problem appeared in the 1631 edition of the finko-ki, where it
is called the “105-subtraction” problem.

39
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3. Suanxue Qimeng, or Introduction to
Mathematical Studies, by Zhu S[f\ijie, 1299

As mentioned in the introduction to this chapter, the Japanese mathemati-
cian Haji Doun (?-?) published a Japanese version of this important book
in 1658. The original Chinese version consists of three volumes with a total
of 259 problems.

In volume 1, the author discusses various values for 7. Zhu Shijie refers
to 7= 3 as “old 77 and goes on to survey some of the advances in the com-
putation of 7 over the centuries. He mentions the mathematician Liu Hsin,
who used a value of 3.154 in the first decade of the first century A.p., al-
though there is no record of how he arrived at it.!” Zhu Shijie also cites Liu
Hui, who in A.p. 263 used a 192-sided polygon to arrive at a value of
w=157/50 = 3.14 (see problem 1-1).

In the fifth century Zu Chongzhi (429-500) and his son Zu Geng ar-
rived at a value of 7 between 3.1415926 and 3.1415927. Although Zhu Shijie
does not discuss all these studies in detail, later mathematicians confirmed
the accuracy of the Zus’ figure by using polygons of up to 16,384 sides. It
was not until about 1600 that European values of 7 approached that of the
Zus in the fifth century.

In Zhu Shijie’s second volume, we find methods for calculating the area
or volume of various figures. The third volume contains a numerical
method for finding the roots of high-degree polynomial equations. Centu-
ries later in the West, this procedure became known as “Horner’s method,”
after an English school teacher William Horner (1786-1837), who pub-
lished it in 1830. Horner, however, has been accused of plagiarizing the
technique from a London watchmaker, Theophilius Holdred, who pub-
lished it in 1820. In any case, both were preceded not only by Zhu Shijie but
by the Italian pioneer of group theory, Paolo Ruffini, who developed the
method in the nineteenth century.!!

The following problems are from volumes two and three of Zhu Shijie’s
work.

0See Ronan, Science and Civilization (“For Further Reading, Chapter 2,” p. 338).
11See http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Horner.html. See
also Cooke, History of Mathematics, p. 415 (“For Further Reading, Chapter 2,” p. 338).
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Problem 3-1
Find the volumes V of the following figures in terms of «, b and A.

(I) A truncated pyramid of height 4= 12 syaku whose lower base is a square with sides
b=6 syaku in length, and whose upper base is a square with sides a=4 syaku in
length. (See figure 2.1.)

(2) A truncated cone, with height 4 = 20 syaku whose circumference for the lower base is
b="72 syaku and for the upper base is a = 36 syaku. (See figure 2.2.) Use = 3.

Solutions can be found on page 54.

Figure 2.1. What is the volume of this frustrum, or truncated
pyramid?

Figure 2.2. What is the volume of this frustrum, or truncated cone?

Problem 3-2
A vigorous horse A can run 240 ri per day and a weak horse B can run 150 7 per day. If

horse A started off twelve days after B, how many days does it take A to catch up with B?

This problem, with the numbers changed, appeared in the 1815 Traditional Japanese
Mathematics book Sanpo Tenzan Shinanroku, or Guide to Algebraic Method of Geometry, by Sak-
abe Kohan (1759-1824). The solution is on page 54.

Problem 3-3A
Solve the following system of equations:

(1) xy=1024, where y/x+ x/y=4.25 and x> y;
(2) xy=4096 where x/y—y/x=3.75.
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Solutions:

(1) By cross-multiplying, x* + y* = 4.25 xy = 4352. But (x+ y)% = 4,352 + 2xy = 6,400. Thus
x+y=280 and xy=1,024. Together the two conditions imply that x and y are the
roots of 2 —80¢+ 1024 = (1 — 16) (¢ — 64) = 0. Since x> y, x= 64, y = 16.

(2) Similarly, x> — y? = 3.75 xy = 15,360. But x*y* = 16,777,216. Since x%y* = x*[x* — (x*> — y*)],
we have »?(x* — 15,360) = 16,777,216. This gives a quadratic equation for x*:

X — 15,3605 — 16,777,216 = (a2 + 1024) (a2 — 16,384) = 0,
which shows that x> = 16,384, or x =128 and y = 32.

Problem 3.3B
Solve the following system of equations for x > y > z:

(1) x? + y*+ 2% = 14384;
(2) x+y+2=204;
(3) x—y=y—=z

We give the Suanxue Qimeng’s original solution on page 54.

4, Sv\ay\fa _Eong Zomg, or Sstrema’ric Treatise
on Mathematics, by Clr\eng Da-wei, 1592

Perhaps the most influential of the Chinese books on Japanese mathemat-
ics, Cheng Da-Wei’s Tieatise consists of 17 chapters. In the first and second he
gives the fundamentals of calculations and introduces the soroban. There
follow nine chapters that have the same titles as in the original Nine Chap-
ters, although the subject matter is different and the fourth chapter has
been divided into two. The remaining chapters consist of more advanced
problems. Despite the considerable number of magic squares it contains,
Cheng Da-Wei’s book is a practical one. Apart from giving instructions on
the use of the abacus, he discusses the mixing of alloys and the calculation
of areas of various figures. In this context he discusses various approxima-
tions to 7, although the values are the same as in the earlier Suan-hsiao Chi-
meng. We here sample a few problems from various chapters of Cheng’s
book. Problem 4-4 is particularly noteworthy in that it requests the use of
“Pascal’s triangle.” The celebrated triangle appeared in an annotated ver-
sion of the original Chinese Nine Chapters, which was published in 1261. It
also appears to have been discussed even earlier by Al-Karaji (953—c. 1029)
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in Baghdad.! In the West, the triangle first appeared in the 1527 Cosmo-
graphia of Petrus Apianus (1425-1552), although Blaise Pascal (1623-1662)
exploited it more thoroughly a century later. Plenty about Pascal’s triangle
can be found on the Web. Its basic property is that the entries consist of the
binomial coefficients useful in expanding polynomials, as required in prob-
lem 4-4. Traditional Japanese mathematicians learned of the triangle from
the Suanfa Tong Zong.

Problem 4-1
(From chapter 3 of the Suanfa Tong Zong: “Houden,” or “Square Fields.”)

Show that the following facts are approximately true:

(1) The circumference of a circle with diameter 1 is about 3.

(2) The diagonal of a square whose sides are 5 is about 7.

(3) The height of an equilateral triangle with side 7 is about 6.

(4) If the area of a circle inscribed in a square is three-fourths the area of the square,
then 7is 3.

(5) The area of a square inscribed in a circle is about two-thirds the area of the
circle.

(6) The area of a circle inscribed in an equilateral triangle is about four-sevenths the
area of the triangle.

(7) The area of a regular hexagon inscribed in a circle is about six-sevenths the area of
the circle.

(8) The area of a circle inscribed in a regular hexagon is about six-sevenths the hexa-
gon’s area.

(9) The area of an equilateral triangle inscribed in a circle is about seven-sixteenths the
area of the circle.

The above problems concerning areas were quoted in Yoshida’s Jinko-ki of 1627. Solutions
to all can be found on page 55.

Figure 2.3. Show that the area of the circle is about three-fourths the area of
the square.

12See http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Al-Karaji.html
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Figure 2.4. Show that the area of the square is about two-thirds the area
of the circle.

Figure 2.5. Show that the area of the circle is about four-sevenths the area
of the equilateral triangle.

Figure 2.6. Show that the area of the regular hexagon is about six-sevenths the
area of the circle.

Figure 2.7. Show that the area of the circle is also about six-sevenths the
area of the regular hexagon.

Figure 2.8. Show that the area of the equilateral triangle is about
seven-sixteenths that of the circle.

OO
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Problem 4-2
(The final problem of chapter 4 of the Suanfa Tong Zong: “Zokufu,” or “Rice and

Money.”)
We produced cloth with weight 43 + 3/4 kin, which consists of two materials a and b.
The weights of aand bin the material are in the ratio 4:1. Find the weights of @ and b.

See page 55 for the solution.

Problem 4-3
(From chapter 5 of the Suanfa Tong Zong, On geometric and arithmetic sequences.)

(1) Here is 594 mon.!* We want to divide them between two people A and B with the
ratio of 1:2. How much money will A and B get?

(2) Here is 672 silver ryo. We want to divide it among A, B, and Cwith the ratio of
1:2:4. How much money will A, B, and C get?

(3) Here is 225.36 koku of rice.! The government wants to distribute it to five classes
of homes. Each second-class home gets 0.8 the amount of each of the four first-class
homes. Each third-class home gets 0.8 times as much rice as each of the eight second-
class homes. Each of the fourth-class homes gets 0.8 times as much as each of the
fifteen third-class homes. Each of the 120 fifth-class homes receives 0.8 times the
amount of rice given to each of the 41 fourth-class homes. How much rice does each
home and each class get in total?

The solutions are on page 55.

Problem 4-4
(From chapter 6 of the Suanfa Tong Zong, “On Pascal’s triangle.”)

Expand the following polynomials by using Pascal’s triangle (figure 2.9).

@) (a+Db)°,
(2) (a+b)?,
(3) (a+b)>.

Answers: Reading off from figure 2.9 gives

13We don’t know how much 1 mon was worth in ancient China but, in seventeenth cen-
tury Japan, 1 mon was about one-fourth of a dollar.

"By 1592, the value for the koku was about 71.616 kg and so the problem is talking about
16,139 kg total.
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(1) (a+b)3= a®+ 3a2b + 3ab® + 17,
(2) (a+ b)*=a*+ 4a®b+ 6a%0® + 4ab® + b*,
(8) (a+b)°=d" +5a*b+ 10a°b*> + 100> + Hab* + b°.

Figure 2.9. Pascal’s triangle, invented hundreds of years earlier
in China and Iraq, is a mnemonic device for the coefficients of
the various terms when expanding an expression like (a+ b)".
Each element in the triangle is found by adding the two ele-
ments on each side diagonally above, with any element outside
the triangle taken as 0. Thus the coefficients for (a+ b)® can be
read off from row 3, giving @® + 34%b + 3b%a+ b°. If the leftmost
element of a row is designated the zeroth element, then the rth
element of the nth row will be recognized as the binomial
coefficients “n-choose-1,” or n!/rl(n—r)!.

Problem 4-5

(1) Find the two sides x bu and x+ 15 bu of a rectangle with area 1,750 square bu.
(2) Find the two sides x bu and x+ 28 bu of a rectangle with area 1,920 square bu.

The solutions are on page 56.

Problem 4-6
(From chapter 7 of the Suanfa Tong Zong: “On the Area of Fields.”)

As shown in figure 2.10, we divide an equilateral triangle ABC into three quadrilater-
als that all have the same area. If the triangle has sides of length 14 and Gis the center of
the triangle, find the area of ABCand the length of the sides of the small quadrilaterals.

The solution can be found on page 56.

Figure 2.10. The equilateral triangle is divided into three

quadrilaterals of equal area, as shown. We are to find the area G
of ABC and the length of the sides of the small quadrilaterals.

The length of each side of the triangle is 14.
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Problem 4-7
(From chapter 8 of the Suanfa Tong Zong: “Civil Engineer.”)

(1) A horse was stolen. The owner found it and begin to chase the thief after the thief
had already gone 37 ri. After the owner traveled 145 ri, he learned that the thief was still
23 riahead. After how many more 7i did the owner catch up with the thief?

(2) A number of identical balls are arranged as shown in figure 2.11, where the base
contains 7 balls and the top contains 3 balls. How many balls are there in total?

(3) As shown in figure 2.12, many identical balls are arranged in a pyramid, whose
base is an equilateral triangle with a side of 7 balls. How many balls are there in total?

(4) Identical balls are arranged in pyramid, this time where as shown in figure 2.13,
the base is a square of side 12 balls. How many balls are there in total?

Figure 2.11. How many balls are in this truncated pyramid?

Figure 2.12. This pyramid has a triangular base with seven balls
along each side. How may balls are in the pyramid?

The solution to problem 1 can be found on page 56. The solutions to problems 2—4 are as follows:

(2) The easiest way to do the problem is to count the balls. However, the sum of
integers k from 1 to n is given by the famous formula

z":k=n(n+l)
1 2
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Figure 2.13. This pyramid has a square base with twelve
balls along each side. How many balls are in the pyramid?

Thus, for this problem,

LN S 7(T+1) 22+1)
;k_gk—gk_ R = 95,

which is easily generalized to any number of balls.

(3) From figure 2.12, you can convince yourself that, if there are p balls along each
side of a layer in the pyramid, then the total number of balls in that layer is just
2 k= p(p+1)/2, or 28 for the base. But each successive layer above the base has one
fewer ball along the side, until the top layer, which has only a single ball, and so the
grand total number of balls Nis just N =ZX7_ p(p+1)/2. Using the famous formula

ikg _ nn+1)2n+1)
1 6 ’

one can easily show that
N=7(7+1)(7+2)/3! = 84.
(4) Since the base is square, in this case there are just p* balls on each layer, with one

fewer for each successive layer, and the total can be found directly as 12, k2 =12(12 +1)
(24 +1)/6 = 650.

Problem 4-8
(From chapter 9 of the Suanfa Tong Zong: “Iransportation.”)

(1) Civil servants A and Bwork in the town office. A goes to work on every twelfth day
and B goes to work on every fifteenth day. Today they meet each other in the office. In
how many days will they meet for the next time?
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Plate 2.5. How many barrels are in the stack? From the Jinko-ki, c. 1818.
(Collection of Fukagawa Hidetoshi.)

(2) A boy saves money in the following way: On day one he saves 1 mon, on day two he
saves 2 mon, and on day three he saves 22 = 4 mon. How much money in total will he have
saved after 30 days?

The answer to (1) can be found on page 56.

Answer 2: The boy’s total savings amounts to a geometric series of the form

n
S=a+ar+ar?+---+ar" =aZrk.
k=0

It is well known that such a series sums to

S=a(dl-r"tH/1-7).
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In our case a=1, r=2, and n=29, and so S= 23— 1=1,073,741,823 mon.
Problem 2 was quoted in the Jinko-ki of 1627.

Problem 4-9
(From chapter 10 of the Suanfa Tong Zong: “Excess and Lack.”)

(1) Here are N persons and a long cloth of length G hiki with a constant width. When
each person gets 8§ hiki of the cloth, 15 Aiki are left over, but if each person wants 9 hiki,
then b hikiis lacking. Find N, the number of persons, and G, the the length of the
cloth.

(2) Here are N persons who have G ryo of money among them. If they are separated
into groups of 3 members and each group takes 5 ryo for shopping, then 10 ryo is left
over. On the other hand, if they are separated into groups of 5 and each group takes 9
ryo for shopping, then there is nothing left over. Find the total amount of money G, and
the number of persons, N.!°

See page 56 for the solutions.

Problem 4-10
(From chapter 11 of the Suanfa Tong Zong: “On Linear Equations.”)

Here are a lot of squash, pears, peaches, and pomegranates. The price of two squash
and four pears is 4 bu. The price of two pears and seven peaches is 4 bu. The price of four
peaches and seven pomegranates is 3 bu. The price of eight pomegranates and one
squash is 2.4 bu. Find the cost of each fruit.

The solution is on page 57.

Problem 4-11
(From chapter 12 of the Suanfa Tong Zong: “On the Pythagorean theorem.”)

(1) Find the radius of a circle that is inscribed in a right triangle whose short sides are
36 and 27. (See figure 2.14.)

(2) If two sides of a right triangle are 12 and 6, then find the side of a square inscribed
in it. (See figure 2.15.)

1®Like the mon, the values of the monetary rys and bu (next problem) in sixteenth cen-
tury China are uncertain. The authors believe they may have been worth about 30 dollars
and 3 dollars, respectively.
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36

N

Figure 2.14. Find r.

27

12

Figure 2.15. Find the length of the side of the square.

Figure 2.16. How deep is the pond?

51
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Plate 2.6. Problem 4-11, part 3, as it appeared in the Suanfa Tong Zong.

(3) Two reeds of equal height project 3 syaku above the surface of a
pond. If we draw the top of one reed 9 syaku in the direction of the
shore so that the top is just touching the surface of the water, find the
depth of the pond. (See figure 2.16.)

The answers are on page 57.
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Answers and Solutions to Chapter 2
Problems

Problem 1-2
If x is the amount of rice, then 50/27 = 21 /x, or

x=21 % (27/50) =11 + 17/50 sho of rice.

Problem 1-3
If x is the amount of cloth the weaver wove on the first day, then

x+2x+4x+ 8x+ 16x =5 syaku or 50 sun. Thus 31x =50 sun, or
x=(1+19/31) sun.

Problem 1-4
(1) y=240 bu; (2) y=160 du; (3) y=130+10/11 bu; (4) y=115+1/5
bu; (5) y=105+15/137 bu; (6) y =97 + 47/49 bu.

Problem 1-5
(1) To find the volume of the bank one needs to recall that the area

of a trapezoid is one-half the product of the altitude and the sum of'its
bases. Thus V=4 X (20 + 8)/2 x 127 = 7,112 cubic syaku.

(2) The number of workers is just the total volume divided by the
volume each worker can carry, or (4 X 14 x 127)/444 =16 + 2/111
workers. [One guesses the boss hired an extra laborer.]

Problem 1-6
If Nis the original amount of the poor traveler’s tax money, con-

vince yourself that

1=N(1/2) + N(1/2)(1/3) + N(1/2)(2/3)(1/4)
+N(1/2)(2/3)(3/4)(1/5)+ N(1/2)(2/3)(3/4) (4/5)(1/6)
=N[1/2+ (1/2-1/3) + (1/3-1/4)
+(1/4—-1/5) + (1/5-1/6)] = N(5/6)

or N=6/5 kin.

Problem 1-7
If ¢is the number of days when the two stems meet, then the total

height must be 90 = (7 + 10) ¢, which implies t=90/17 =5+ 5/17
days.
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Problem 1-8
For a, b, ¢, the amounts of rice from plants A, B, C, we have 3a+ 2b

+¢=39;2a+3b+ ¢=34; a+ 2b+ 3c=26. This system of equations can
easily be solved simultaneously to get a=9.25, b=4.25, c = 2.75.

Problem 2-1
As in problem 1-5, the number of workers is the volume of the

trapezoidal bank, divided by the volume each worker can carry per
season, or (20 +54)/2 x 38 x 5,650 + 300 = 26,011.

Problem 2-3
If x is the height of the tree, then by similar triangles,

x/1.5=15/0.5, and so x = 45 syaku.

Problem 2-4
If ris the number of roosters and /4 is the number of hares, then

r+ h=35 and 2r+ 4k = 94. Solving these equations implies 2= 12 and
r=23.

Problem 2-5
The number of trees is 9% = 81; branches, 9° = 729; nests, 9* = 6,561;

crows, 9° = 59,049; chicks, 9% = 531,441; feathers, 97 = 4,782,969; colors,
98 = 43,046,721.

Problem 3-1
(1) V= (h/3)(a® + ab+ b?*) = 304 cubic syaku. (2) V= (h/3)(a®+ ab+ b*)
(1/12) = 5040 cubic syaku, where the radius of the lower base is b/2mw =
b/6.

Problem 3-2
Let n be the number of days it takes horse A to catch horse B. The

distance both horses travel is the same, so n x 240 = (n+ 12) x 150,
which shows that A catches Bin n =20 days.

Problem 3-3B
The third equation gives x + z= 2y. Then from the second equation

y=68. Now let k= x— 68 =68 — z. Then x=k+ 68 and z= 68 — k. From
the first equation, (68 + k)2 + 682 + (68 — k)2 = 14,384. Solving for k?
gives k% = 256, which implies k= 16, x= 84, y= 68 and z= 52.
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Problem 4-1
(I) Cheng Da-Wei assumed that 7= 3, which gives the answer

directly. One can also inscribe a regular hexagon in a circle of diameter
1 and see immediately that the perimeter of the hexagon is
exactly 3.

(2) The diagonal of the square is 542 = 7.07106.

(3) The height of the equilateral triangle follows from the Pythago-
rean theorem h%>="72— (7/2)%, or h = ,147/4 = 6.

(4) If the side of the square is a, then = (3/4) a®. But a= 21, which
immediately gives 7= 3.

(5) If the diameter of the circle is 27, then a side of the square is
27/«/5 and the square’s area is (27/«/7) =mr? x(2/3).

(6) The area of the equilateral triangle is (3/2) ra, where ais the
side of the triangle, and ris the radius of the inscribed circle. But
a=2rtan 60 = 2\/57, so the ratio of the areas is 1/\/§ =4/7.

(7) If the radius of the circle is 7, then the area of the inscribed
hexagon §’ is six times the area of each triangle, with sides rand
altitude (+/3/2)r. So §'=6x (1/2)r X (\/3 /2)r = (343 /2)r2. Dividing by
the area of the circle S= 3r? gives §'/S = «/5/2 =6/7.

(8) These triangles have side @ and altitude r =a«/§ /2. So the area
of the hexagon is §'=6 X (1/2)r X (2/\/5)7 =372, Dividing this into
the area of the circle S= 372 gives again S/S8’'= «/5/2 =6/7.

(9) The area of the equilateral triangle with side ais
S’=(1/2)a2\/§/2. But azx/gr, SO S/=(3\/§/4)72. Dividing by the area
of the circle, S= m? = 31* gives §'/S = «/g/ll ='7/16.

Problem 4-2
We are told that the total weight of the cloth is a+b=43+3/4 and

that a/b = 4. Solving these equations together gives a = 35 kin and
b=8+3/4 kin.

Problem 4-3
(1) If A gets k mon and B gets 2k mon, then 3k =594 and k = 198 and

2k = 396.

(2) If A gets k ryo, B gets 2k, and C gets 4k, then 7k = 672, k =96,
2k =192 and 4k = 384.

(3) Let x be the amount of rice for a first-class home and let r=0.8.

Then (4 + 8r+ 157 + 417° + 1200") x = 225.36 and x = 225.36,/90.144 = 2.50.

)
N

@@@@
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Thus, one first-class home gets 2.5 koku and the first-class homes get 10 all
together. One second-class home gets 8 X 2.5 = 2 koku, and the second-
class homes get 16 total. Similarly, a third-class home gets 1.6 koku and the
third-class homes get 24.

A fourth-class home gets 1.28 koku and the fourth-class homes get 52.48.
One fifth-class home gets 1.024 koku and 122.88 koku go to the fifth-class
homes.

Problem 4-5
(1) For the first rectangle we have x(x+ 15) = 1,750, which gives

the quadratic equation x*+ 15x — 1,750 = 0. This factors into
(x+50)(x—35) =0, yielding x= 35 and x+ 15 = 50 bu.
(2) Similarly, for the second rectangle, x(x + 28) = 1,920, which can
A be written as (x+ 14)% = 1920 + 196 = 2,116 = 46%. Thus x= 46 — 14, or
x=32 and x+ 28 = 60 bu.

Problem 4-6
8 c The area of triangle ABC=1/2 x14 x 7«/5 = 84.87, and the area of

each quadrilateral is therefore 84.87/3 = 28.29. The sides of small
quadrilaterals are thus 7 and 74/3/3 = 4.

Problem 4-7
(1) When the owner had gone 145 7, the thief had traveled

145 — 37 + 23 = 131 ri. That means that, if s,and s are the speeds of the
thief and owner, their ratio is s,/s, = 131/145. The time it takes the
owner to go another k riis the same as the time it takes the thief to be
caught after, say, another x ri. Since time is distance divided by speed,
we have (23 + x)/s = x/s,. Consequently (s,/s ) (x + 23) = x, implying
x=215+3/14 and k=238 + 3/14.

Problem 4-8
(1) The number of days that go by before the civil servants meet again

is the least common multiple of 12 and 15 = 60 days after they meet.

Problem 4-9
(I) The first condition gives G= 8N+ 15, while the second gives

G=9N-5. Solving the equations simultaneously yields N= 20 and
G=175.
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(2) Here, G=(5/3) Xx N+ 10 and G= (9/5) X N, from which it
follows that N= 75 and G= 135.

Problem 4-10
Let x be the price of a squash, y the price of a pear, z the price of a

peach and w the price of a pomegranate. Then, 2x+ 4y=4, 2y+ 7z=4,
4z+ 7w= 3, and 8w+ x = 2.4. Solving these equations simultaneously
gives x = 0.8 bu for one squash, y= 0.6 bu for one pear, z= 0.4 bu for one
peach, and w= 0.2 bu for one pomegranate.

Problem 4-11
(1) The length of the hypotenuse is ,/362+272 = 45. From figure 2.14
this msust also be 36 — r+ 27 — », which implies r= (36 + 27 — 45)/2 = 9.
(2) If x1is the side of the square, then similar triangles gives
12/6 = x/(6 — x), which implies x = 4.
(3) If xis the depth of the pond, then x* + 9% = (x+ 3)?, which gives
x=12 syaku.
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Plate 3.1. This illustration comes from a 1715 edition of the Jinko-ki and accompa-
nies a problem dealing with the breeding habits of mice. We give it as problem 4
in this chapter. (Collection of Fukagawa Hidetoshi.)
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Japanese Mathematics
and Mathematicians of the
Edo Period

From a young age J have devoted
much time to the S’ru\cly of mathematics
and have read many books. J have
visited my teacher, faw fwom here, and
have studied hard. But, lately, chil-
dren are p|ayim9 tricks and writing
bad poetry. Jtis deplorable that they
are wasting so much time. Jf they
write and read any poetry, it is better
that the poetry concerns mathematics.
J shall write formulae in Jyugai-roku
as poetry.

—TFrom the preface to Imamura

Tomoaki’s 1640 book for children,

TInki Sanka, or Poetry of/\/lu/ﬁp/es

and Divisions

Jn chapter 1 we briefly recounted the genesis of traditional Japanese
mathematics, wasan, how it arose with the appearance of the abacus in Ja-
pan and the 1627 publication of Yoshida Mitsuyoshi’s Jinko-ki, and how
wasan’s evolution was very much shaped by the Tokugawa family’s isolation-
ist policies, which took hold in the early to mid-seventeenth century. En
route we encountered a few samurai who, having received their Master of
Mathematics licenses could teach at a juku, or start their own private schools
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at home or nearby. Here we survey some of the more important mathemati-
cal works of the Edo period and the samurai-mathematicians who created
them. As in the previous chapter, we attempt to impart their flavor through
the problems they contain, which for the most part should be suitable for
high school students.

Wasan of the Seventeenth Cen’ruw‘y

Yoshida Mitsuyoshi and the Jinko-ki

Little can be added to the biography of the first identifiable Japanese math-
ematician, Mori Shigeyoshi, who in 1622 wrote a booklet about how to use

Plate 3.2. Another street scene from the Jinko-kiillustrating the benefits of
learning the soroban for business. This one is from an edition published between
1818 and 1829. (Collection of Fukagawa Hidetoshi.)
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the soroban, except that he had three students, Imamura Tomoaki (?-1668),
Takahara Yoshitane, and Yoshida Mitsuyoshi (1598-1672), the last of whom
published the Jfinko-ki, which was responsible for much of what followed.

We know slightly more about Yoshida. Born in Kyoto in 1598, he was the
grandchild of the merchant Suminokura Ryoi (1554-1614), who had be-
come a millionaire through trade with China and the other East Asian
countries, and so Yoshida would have had easy access to Chinese mathe-
matics texts. He learned arithmetic from Mori, and from the intellectual
Suminokura Soan he learned the mathematics of Cheng Da-Wei’s Suanfa
Tong Zong. In later life Yoshida lost his eyesight, undoubtedly from making
so many revisions on the Jinko-ki, and he died at the age of seventy-five.

Most of the exercises in the three-hundred-plus editions of the Jinko-ki
are concerned with calculations useful for everyday life and business trans-
actions. Here, we present a handful from the 1643 edition, which was pub-
lished during Yoshida’s lifetime. Of the 270 problems it contains, thirty-six
are soroban exercises, twenty-eight concern exchange rates, and thirty-five
more involve measuring the areas of fields. Almost all of them were lifted
from Chinese texts.

Problem 1
This problem is quoted from the Chinese fiu zhang Suanshu.

Here is a field shaped like a donut. The outer circumference is is 120 ken,' while the
inner circumference is 84 ken. A house sits in the middle of the field so we cannot mea-
sure its diameter, but the distance between the two circumferences is 6 ken. Find the
area of the field without using .

Original answer: Area = (120 + 84)/2 x 6 = 612 tubo.

Problem 2
This problem, Nusubito San, or “Thieves Arithmetic” was taken from the Sun-Tsu

Suanjing (see chapter 2, problem 2-2).

One night, some thieves steal a roll of cloth from a shed. They are dividing up the cloth un-
der a bridge when a passer-by overhears their conversation: “If each of us gets 7 tan, then

'One kenis 1.8 m. One square ken, 1 ken X 1 ken=1 tubo.
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Plate 3.3: The oil peddler in
problem 3 must measure out
an awkward amount of oil
with only two ladles. From a
1643 edition of the Jinko-ki.
(Collection of Fukagawa
Hidetoshi.)

8 tan are left over, but if each of us tries to take 8, then we're 7 tan short.”> How many thieves
were there, and how long was the cloth?

See chapter 2, problem 2-2 for the method of solution.

Problem 3
In the Edo period people used colza oil (similar to rapeseed or canola oil) for lighting
their homes. Hence this abura wake or “oil distribution” problem:

A colza-oil peddler is hawking oil. One evening on the way home, a customer asks him
for 5 sho of o0il.? But the oil peddler only has 10 shé of oil left in his big tub, and no way to
measure out oil except two empty ladles that can hold 3 and 7 sho. How does the oil
peddler measure out five sho for the customer?

Original solution: Call the big tub A, the 3-sho ladle B, and the 7-sho ladle C.

2A tan is a unit for measuring a bolt of cloth about 34 cm wide. One tan of such a cloth is
about 10 m.

31 sho= 1.8 liter. Note: The Japanese skodiffers from the Chinese sha.
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First, with the Bladle, scoop out 3 cups from A and fill C as far as it goes. Then there
is 1 shoin A, 7 shoin C, and 2 sho left over in B.

Next, pour everything in Cback to A. Then there is 8 sho in A, 2 sho in B, and nothing
in C.

Third, pour everything from Binto C. Now there is 8 sho in A, 0 sho in B, and 2 sho
in C.

Last, with the empty cup B, pour 3 sho from A into C. Now there is 5 shoin A, 5 in C,
and the peddler can satisfy the customer.

The oil-distribution problem possibly originated with Yoshida himself; at least it appears
not to have come from any Chinese source. It is also related to the problem known in the
West as the three-jug problem.*

Problem 4
Yoshida presents this Nezumi San, or “Mice Problem,” as an exercise for the soroban. Its

kinship to problem 4-8 in the previous chapter is easy to see.

On January first, a pair of mice appeared in a house and bore 6 male mice and
6 female mice. At the end of January there are 14 mice, 7 male and 7 female.

On the first of February, each of the 7 pairs bore 6 male and 6 female mice, so that at
the end of February, there are 98 mice in 49 pairs. From then on, each pair of mice bore
six more pairs every month.

(1) Find the number of mice at the end of December.
(2) Assume that the length of each mouse is 4 sun, or 12 cm. If all the mice line up,
each biting the tail of the one in front, find the total length of mice.

Original answers

(1) 27,682,574,402.

Also, the following was written in the book: At the end of each month, the number
of miceis 2x 7=14;2x 7 x7=98; 2 x 7 =686; 2 x 7* = 4802; 2 x 7° = 33,614,
2 x 76=235,298; 2 x 77 = 1,647,086; 2 x 78 = 11,529,602; 2 x 79 = 80,707,214; 2 x 7'0 =
564,950,498; 2 x 71 = 3,954,653,486; 2 x 7'? = 27,682,574,402.

This is a geometric progression (see problem 4-8 in chapter 2).

4See Coxeter and Grietzer, Geometry Revisited (“For Further Reading, What Do I Need to
Know .. .”, p. 337. They also give another solution.
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(2) The total length is 2 x 7'% x 12 cm. The Jinko-ki states, “The length is the same as
the distance around Japan and China. In fact, the length is seven times the distance from

the earth to the moon.” The last estimate is actually not too far off.

Problem 5

Imamura Tomoaki (?—1668)

The Jinko-ki spurred a great interest in problems that could be tackled
numerically, including the calculation of areas of polygons, the volumes
of solids, and in particular the calculation of . One mathematician who
wrote about such matters was Imamura Tomoaki from Osaka.® We have
no information about him except that he was one of Mori Shigeyoshi’s
“three honorable disciples” and that in 1639 he published Jyugairoku,
whose title he appears to have taken from an old Chinese geography
book, Sengaikyo. The following year he published a revised version for
children, Inki Sanka, or Poetry of Multiples and Divisions. We quoted the
beginning of Imamura’s preface to the Inki Sanka at the head of the chap-
ter. He goes on to say, “If any child reads any poem in this book and tries
to do the calculation on the soroban, then the experience will be useful in
his future. If any child wants to know the proofs of formulae, then see my
book Jyugairoku.”

In the Jyugairoku, Imamura determined that the square root of 152.2756
was 12.34, calculated the cube root of 1880, the areas of regular polygons
with 3, 5, 6, 7, 8, 9, and 10 sides and provided many formulas for the vol-
umes of solids. Here is an example of “poetry on the areas of regular poly-
gons” from the Inki Sanka.

(I) For aregular polygon of side s, show that

(a) The area of an equilateral triangle is the side multiplied by the side multiplied

by 0.433. [in other words, A = 0.433s%]

(b) The area of a pentagon is 1.73s>

(c¢) The area of a heptagon is 3.64s
(d) The area of an octagon is 4.828s?
(e) The area of a nonagon is 6.093s

5Sometimes Imamura Chisho.
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(2) Why are the formulas of the square and hexagon missing?

(3) Show that the volume of a sobagara (buckwheat) grain, which is a tetrahedron, is

“side, side, side, and 0.11783” [that is, 0.117835°].

The solutions are given on page §4.

Muramatsu Shigekiyo (1608-1695)

Although the Chinese had a value for ® better than 3.14 in the sixth cen-
tury, for some reason at the onset of the Edo period Japanese mathemati-
cians used m=3.16. We find this value in Mori Shigeyoshi’s 1622 primer
Warizansyo, in the first edition of the finko-ki, as well as in Imamura’s Inki
Sanka. No one knows why this should be the case. In many traditional prob-
lems, circles were described by their diameter, not their radius, so the area
is A= (m/4)(diameter)? rather than A = m?. It happens that 3.16 = 4 x 0.79,
exactly, so it may have been convenient to round off © and write A=0.79
(diameter)?. But this is just a guess.

During this era of ® = 3.16, Muramatsu Shigekiyo showed that the pe-
rimeter of a 2'°=32768-sided polygon inscribed in a unit circle was
P=3.141592648. Muramatsu actually published his value to 22 digits in his
1663 book Sanso, or Stack of Mathematics, but got it right to only eight digits.
Here we present the Sanso’s table of the perimeter P(n) of 2"-sided poly-
gons inscribed in the unit circle. With the formula for the perimeter
P(n) =2"sin(180/2") and a calculator, readers can confirm the correctness
to eight digits.

P(3) = 3.061467458, P(4) = 3.121445152, P(5) = 3.136548490),
P(6) = 3.140331156, P(7) = 3.141272509, P(8) = 3.141513801,
P(9) = 3.141572940, P(10) = 3.141587725, P(11) = 3.141591421,
P(12) = 3.141592345, P(13) = 3.141592576, P(14) = 3.141592634,
P(15) = 3.141592648,

With the local value of @ equal to 3.16, Muramatsu needed some cour-
age to conclude that in fact w=3.1415926, and he did back off slightly,
claiming after comparison with the Chinese values only that © = 3.14.
Nevertheless, it was a brave move that gained him an adherent, Isomura
Yoshinori.

65
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Plate 3.4. As did many other mathematicians,
Muramatsu Shigekiyo (1608-1695) approxi-
mated 7 by constructing regular polygons in
a unit circle. Shown here is an octagon, but
Muramatsu considered up to 32,768-sided
polygons and calculated 7 to twenty-two
digits; however, only the first eight were
correct. (Matsuzaki Toshio.)

Isomura Yoshinori (1630-1710)

Like the other mathematicians of the period, including Imamura, Isomura
Yoshinori studied problems that had approximate solutions. Isomura was a
samurai of the Nihonmatsu clan in Fukushima prefecture. In 1661 he pub-
lished Sanpo Ketsu Gisho, or Profound Mathematics, in which he used 7 = 3.16.
But in 1684 he published a second, annotated version, Tohsyo Sanpo Ketsu
Gisho. By then, spurred on by the finko-ki, as well as Muramatsu, Isomura
employed a 2'7 = 131,072-sided polygon to calculate T = 3.141592653, con-
firming and extending the results of his predecessor.

Isomura also developed an approach to calculate the volume of simple
solids by slicing them up into disks, then adding the volume of the disks to-
gether. This would give an approximate result, but calculus had only just
been invented in the West and did not exist in Japan, and one could not ex-
pect anything more. We offer a noncalculus problem from the first edition.
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Problem 6
(1) Find the volume of a regular tetrahedron of side 1.

(2) Given an equilateral triangle of side 1, as in figure 3.1, draw three lines to the
center, construct three equal triangles, and draw three inscribed circles. Show that the
diameter of the circles is 2r = 0.26794.

Figure 3.1. Show that the diameter of the circles is 2r= 0.26794.

(3) Given a pentagon of side 1, as in figure 3.2, draw five triangles and five inscribed
circles. Show that their diameter is 2r = 0.50952.

Figure 3.2. Show that 2r= 0.50952.

Here is the original solution to part I:

Solution to (1): Consider the cube shown in figure 3.3, with sides 1/ «/5 , which
means the sides of the embedded tetrahedron equal 1. Cut out four pyramids from
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the cube. Convince yourself that each pyramid has sides 1/ «/5 , 1/ «/5 , hypotenuse 1, and
altitude 1/ «/E . Then the desired volume of the tetrahedron is

-

The solutions to parts 2 and 3 can be found on p. 84.

Seki Takakazu (16402—1708)

The level of traditional Japanese mathematics took a sharp turn upward
toward the end of the seventeenth century, largely due to the labors of Seki
Takakazu, Japan’s most celebrated mathematician. Many stories are told of
Seki’s powers, but like the stories about the youthful Gauss, they are to be
treated with skepticism. Most of Seki’s works were published posthumously
by his disciples and, because Japanese mathematicians traditionally de-
ferred to their masters, this has always made it difficult to know precisely
what he did and did not do. Seki’s exact birthdate and birthplace remain
unknown, but he was a close contemporary of Newton. Of samurai descent,
he was adopted in infancy by the noble family of Seki Gorozayemon and
went by that surname. Later, he worked in the treasury of the Koufu clan,
whose head was Lord Tokugawa Tsunashige. In 1704, Seki moved as a sho-
gunate samurai into the Tokugawa government and worked for two years as
a mid-level treasurer. He retired in 1706 and died in 1708.
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Plate 3.5. A portrait of Japan’s
greatest mathematician, Seki
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Takakazu (1640?-1708), from the
undated manuscript Kosetsuki, or

Ancestry of Mathematicians.
(Tsurumai library.)

Seki came of age at an opportune moment, exactly during the Gen-
roku, and had ample opportunity to study the burgeoning number of
mathematics books then being published. In 1672, when he was about
thirty, he wrote a manuscript “Solutions to Unsolved Problems of the
Sanpo Ketsu Gisho” by Isomura. Two years later he published the Hatsubi
Sanpo, or Detailed Mathematics, which consists of solutions to fifteen un-
solved problems in the 1671 Kokon Sanpoki, or Old and New Mathematics, by
Sawaguchi Kazuyuki (?-?).

Hatsubi Sanpo was actually the only book published by Seki during his
lifetime. At his death he left twenty-one books in manuscript, including
seven on astronomy. In 1712 his disciple Araki Murahide published four
volumes of Seki’s works under the title Katsuyo Sanpo, or Collection of Impor-
tant Mathematical Results. It is from this collection that many of Seki’s contri-
butions are known.

Although Seki’s name is sometimes dubiously associated with the in-
vention of the Enri, definite integration, there is no question that he was



70 Cl/\ap'l'ev‘ 3

the first to develop the theory of determinants, a decade before Leibnitz.
He also discovered the so-called Bernoulli numbers before Jacob Ber-
noulli, and Horner’s method 150 years before Horner, although in this
he was anticipated by the Chinese. Here we begin by presenting a prob-
lem, Kaifuku Dai no Ho, “Determinants,” dating from 1683. (One does
not really need to know what a determinant is to follow the solutions.)

Problem 7
(1) Given two equations in v,
ay+b=0,
cy+d=0,
where the coefficients a, b, ¢, d may be nonzero constants or any functions in another
variable x, eliminate y and find the condition on a, b, ¢, and d to give an equation in
x alone.
(2) Given three equations in ¥y,

ay*+ by+c¢=0, (8.1)
dy?*+ey+ f=0, (3.2)
g+ hy+j=0, (3.3)

where again the coefficients a, b, ¢, d, ¢, [, g, h, and jare functions in x, find the condition
ona,b,c d,e, f, g h, and jto give an equation in x alone.

Solutions:
(1) We easily see that y=—b/a=—d/c, from which it follows that ad — bc= 0.
(2) Multiply Eq. (3.1) by d, and Eq. (3.2) by a, and subtract (3.1) from (3.2). This
gives
af —dc
yo o e
bd — ae
Similarly, multiply the original equation (3.2) by g, equation (3.3) by d, and again
subtract to find
d-Jg
eg —dh
Together, these two expressions imply (af — dc)eg — dh) = (bd — ae)(dj — fg), or
aej + bfg+ cdh — afh — bdj — ceg= 0.

y:

Seki displayed these relationships in a diagram (see plate 3.9), which readers familiar
with linear algebra will recognize as equivalent to setting the modern determinant of a sys-
tem of equations equal to zero (figure 3.4).
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Plate 3.6. Seki’s original notation for determinants from his 1633
manuscript Kaifuku Dai. (Japan Academy.)

Figure 3.4. Modern notation for determinants in problem 7.

>
~

Seki, like his contemporaries, was deeply concerned with determining T,
but unlike the others devised an original method to do it. Following Mura-
matsu’s method above, he calculated the perimeters of a 25 sided, a 216-
sided, and a 2'-sided polygon: P(15) =3.14159264, P(16) = 3.14159265,
and P(17) = 3.141592653. Then suddenly he claims

[P(16) — P(15)1[P(17) — P(16)]
[P(16) — P(15)]1-[P(17) — P(16)]

7T = P(e0) = P(16) + = 3.14159265359.

That is, ® should be equal to the perimeter of an infinitely sided polygon
inscribed in a unit circle, yet he writes his result in terms of P(15), P(16),
and P(17). Moreover, this value has two more correct digits than the ten
correct digits contained in P(17). Seki did not reveal his thinking, but in
this case we can reconstruct it. Let a=a =P(16) - P(15) and
a, = P(17) — P(16). In problem 4-8 from chapter 2 we discussed a geomet-
ric series, which is of the form a+ ar+ ar®> + ar* + ar* - - -, where ris the
constant ratio between terms. For an infinite number of terms such a series
sums to a/(1 — 7). Let r= a,/a,. If one assumes that T can be approximated
as the sum of a geometric series, then

a,ay

>

P() = P(15 4 __ pa16
(o) ( )+(1_r) ( )+(a1—a2)

Seki’s result.
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Seki’s new value of @ was published by his disciple Takebe Katahiro in
the Tetsujutsu Sankei, where Seki had previously shown 1t = 355/113. Of this
value Takebe remarked, “In the old days, my master Seki Takakazu found
the value 7 = 355/113 by his own method. Then about twenty years later,
he recognized that the same value = 355/113 had already been obtained
by Zu Chongzhi [chapter 2] in the Zuishi [ Records of Zui Era (581-619)]. It is
wonderful two prominent mathematicians got the same value in two sepa-
rate countries and separate ages.”

Plate 3.7. One of Seki’s original
drawings for a 15-sided polygon,
from his book Katsuyo Sanpo.
(Matsuzaki Toshio.)
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Problem 8
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As we have been discussing, for this calculation of ® Seki was interested in the proper-

ties of n—sided polygons. For instance, in his Kaku Ho, or Angles of Regular Polygons, in
volume 3 of Katsuyo Sanpo, he calculates the radii of the inscribed circle (incircle) and

the circumscribed circle (circumcircle) of an n-gon, for n up to twenty. He does this for

polygons to the accompaniment of complicated drawings (see plate 3.7) without trigono-

metric functions, but we can give an idea of the results through the following exercises.

(1) Given an equilateral triangle of side 1, find the equations giving the radius r, of

the inscribed circle and R, of the circumcircle.
(2) Do the same for a square of side 1, and
(3) for a pentagon of side 1.

The solutions are on page 84.

Wasan of the éiglfﬁeen’rl/\ Century

Takebe Katahiro (1664—1739)

Within a few decades of the time that Newton and Leibnitz developed
calculus in the West, traditional Japanese mathematicians also began
taking steps in that direction, although they did not progress to a full-
fledged theory. The person from whom we know most about those initial
efforts—and perhaps the greatest contributor to those efforts himself—is
Seki’s most illustrious disciple, Takebe Katahiro,> whom we just men-
tioned. Takebe became Seki’s student at the age of thirteen and published
his first book when only nineteen, the Kenki Sanpo, or Study Mathematics
Profoundly. Later he became a shogunate samurai, a position equal to that
of his former master. In 1719 the government commissioned Takebe to
create a map of Japan, which was renowned for its detail; however, it has
not survived. Although, as mentioned, Seki is sometimes credited with
the invention of the Enri, more concrete evidence indicates that it was in
fact Takebe.

Takebe published three books during his lifetime and left twelve other
works behind in manuscript. The first of the manuscripts is Taisei Sankei
from 1710, the Comprehensive Book of Mathematics in twenty volumes. The
other, from 1722, was Tetsujutsu Sankei, or Series.

6Sometimes Takebe or Tatebe Kenko.



74

Cl/\ap'l'ev‘ 3

Plate 3.8. In the 1778 Fuhki Jinko-ki, or Riches of Jinko-ki, the anonymous author
suggests weighing an elephant by bringing it onto a boat and marking the water
line, removing the elephant, then bringing on stones of known weight until

the water line reaches the same level it did with the elephant. (Collection of
Fukagawa Hidetoshi.)

Using a 1,024-sided regular polygon inscribed in a circle, Takebe gave in
the Taisei Sankei the approximation

e 5,419,351
1,725,033
from which he calculated that = 3.141592653589815383241944, noting
that this value is bigger than the real 7 by 0.000000000000022144779300.
The reader can verify on a computer that 5,419,351/1,725,033 — 7= 0.0000
00000000022144779300394, which demonstrates that Takebe’s calcula-
tions were extraordinarily accurate.
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In the Tetsujutsu Sankei, Takebe calculated ©t = 3.141592653589793238462
-64338327950288419712. . . . Once again, a computer gives 7T = 3.14159265-
358979323846264338327950288419716939937510582, meaning that Takebe
had 41 digits correct. Takebe’s methods are rather complicated, utilizing
infinite series, which did not appear in Chinese mathematics and which he
introduced himself. We outline them in chapter 9.

Matsunaga Yoshisuke (16922—1744)

Once you have a closed formula for 7, like ©/4 = tan™ (1/2) + tan™ (1/3),
as was found in the West around the turn of the eighteenth century, the
only limitation to computing as many digits of T as you want is sheer bore-
dom. The Japanese, however, did not use trigonometric functions and did
not have such formulas, although they did have series. In any case, in the
seventeenth and early eighteenth centuries it was not yet understood that 7
was an irrational number, and so perhaps the traditional Japanese mathe-
maticians, along with their Western counterparts, dreamed of finding the
point at which © became a repeating decimal.

One of the m-digit hunters was Matsunaga Yoshisuke. Little about him
has come down to us. Matsunaga was a samurai in the Iwaki clan, whose
lord was also a mathematician, Naitdo Masaki (1703-1766). Matsunaga
wrote forty-two books in manuscript, the main one of being the Hoen
Sankei of (1739), or Mathematics of Circles and Squares. In it he calculates T
correctly to fifty digits. In an unpublished manuscript, Hoen Zassan, or
Essay on Mathematics of Circles and Squares, he calculates 1 correctly to 52
digits, which is the longest value of w found in the wasan. We present one
problem here concerning 7 that gives an idea of Matsunaga’s methods.

Problem 9
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Assume that 3.1415926 < 7 < 3.1415927. Show that we then have Seki’s approximation

7 =355/113.
Matsunaga’s original solution can be found on page 85.
Matsunaga also presented many numerical methods for use with the

soroban, in other words, computer programs. Some of these concerned
the Enri and we discuss them in chapter 9.
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Nakane Genjun (1701-1761)

As in the West, Japanese mathematicians like Seki and Isomura took an in-
terest in “recreational pursuits,” such as magic squares and circles. Indeed,
the Japanese may have gone beyond their Western counterparts, construct-
ing 20 x 20 squares, not to mention magic wheels, complete with epicycles.
One mathematician who engaged in such activities was Nakane Genjun, the
son of a famous Kyoto mathematician, Nakane Genkei (1662-1733), who
himself had studied under Takebe. At age 60 in 1721, Genkei, considered
one of the most learned men in Japan, received an invitation from Tokugawa
Yoshimune to translate two Chinese astronomy books. A decade later he
made a number of observations of the sun and moon and dedicated his re-
cord book, in manuscript, to Tokugawa Yoshimune. Nakane Genjun studied
mathematics with his father in Kyoto and later in Edo with Takebe. Genjun’s
major work is the book Kanjya Otogi Zoshi, the Collection of Interesting Results in
Mathematics, published in 1743. The book contains 69 problems of which we
present two for amusement, “Paper Cutting” and “Magic Squares.”

(1) How do you fold and/or cut with scissors a rectangular piece of paper composed

of two unit squares such that you can construct a single square of side CE (See figure 3.5.)

(2) How do you fold and/or cut a rectangular piece of paper with sides in the propor-

tion 1:3 so that you can construct a square with side equal to NEE: (figure 3.6.)

(3) How do you cut and fold a rectangular sheet composed of five unit squares so that

for each case shown in figure 3.7 you can construct a square of side V57

Answers and solutions can be found on page 85 .

Figure 3.6. Cut and fold a rectangle to make a square
i) —

of side

Figure 3.5. Cut and fold a rectangle to make a
square of side & .

—
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Plate 3.9. Original drawings for paper cutting from Nakane Genjun’s 1743 book
Kanjya Otogi Zoshi. (Masuzaki Toshio.)

—

Figure 3.7. Cut the given
i configurations to make a square
of side /5 .
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(1) Using the numbers 1,2,3 three times each, make a magic square such that the

sum of each row, each column, and each diagonal equals 6.

(2) Using the the numbers 1,2,3,4 four times each, construct a magic square such that

the sum of each row, each column, and each diagonal equals 10.

We give one solution for part 2 in figure 3.8. The others we leave to you.

Figure 3.8. Magic square with sums of rows, columns, and diagonals

equal to 10.

Ajima Naonobu (1732-1798)

Throughout the eighteenth century, Japanese mathematicians devised ge-
ometry problems that resulted in high-degree equations. The most famous
is the “Gion shrine problem,” which consisted of an equation of 1024 de-
grees. (See chapter 7 for the problem itself.) No analytic—that is, exact—
solution has ever been found for the Gion shrine problem, but, as mentioned
in chapter 1, Ajima Naonobu became famous for simplifying it from an
equation of 1024 degrees to one of ten degrees. He left his calculations in
an unpublished manuscript of 1774, Kyoto Gion Daito jutsu (The Solution to
the Gion Shrine Problem).

The Gion shrine problem was only one contribution of many that Ajima
made to several branches of mathematics, and, although he in fact pub-
lished nothing during his lifetime, he is considered the greatest Japanese
mathematician of the eighteenth century. Born in 1732 into the Edo branch
of the Shinjo clan, Ajima became samurai when he was twenty-three’. At
forty-two he attacked the Gion shrine problem; at forty-three he received the
position gun bugyo or “country magistrate,” and he died in Edo in 1798.

Apart from his official work, Ajima studied mathematics in the Seki
school of Edo from which he received a license of Master of Mathematics.

7“Becoming samurai” basically means being appointed by a clan to some official posi-
tion.
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Generally, Ajima’s work is marked by its originality, and it has been said
that had he lived in the West he would have equaled Joseph Lagrange,
perhaps the greatest mathematical physicist after Newton. In the forty-two
books he left behind as manuscripts, which were later distributed largely
in hand-written copies, Ajima comes closest of any Japanese mathemati-
cian to a full theory of integration. A year after Ajima’s death, one of his
students, Kusaka Makoto (1764-1839), prepared for publication (but did
not in fact publish) a collection of Ajima’s works, Fukyu Sanpo, or Master-
pieces of Mathematics, which contains the “Malfatti problem,” written down
three decades before it was proposed by the Italian Gian Francesco Mal-
fatti (see chapter 8).

In the course of solving a complicated problem in the Fukyu Sanpo, Ajima
needed to find 10" for 0 < n < 1. He writes, “I have obtained a new method
for finding the value of 10" (0 < n < 1), which is a difficult problem.” This
provides the basis for the exercise we present here, one that demonstrates
Ajima’s method.®

Problem 12
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Solving the equation x'° — 10 = 0, Ajima shows that the root 10°! = 1.258925. He next

shows that x!* — 109! = x19 — 1.258925 = 0 has the root 10%! = 1.023293. Thus,
(1) Using 10%! = 1.258925, find the values of 10"(n=0.9, 0.8, 0.7, . . ., 0.2) to seven

digits.

(2) Using 10°%! = 1.023293, find the values of 10"(n=0.09, 0.08, 0.07, ..., 0.02) to

seven digits.
(3) From (1) and (2), find 10%% to seven digits.

The solution is on page 87.

Fujita Sadasuke (1734—1807) and Fujita Kagen (1772—-1828)

The greater part of this book is devoted to sangaku problems, and such a
collection would have been impossible without the work of our honorable
ancestors the Fujita, briefly mentioned in Chapter 1. The elder, Sadasuke,
was born in 1734 in Saitama province and studied at Seki’s school. In 1762
he was appointed an assistant astronomer by the Tokugawa government,

81t is sometimes claimed, perhaps on the basis of this problem, that Ajima constructed
tables of logarithms, but we have found no evidence of this in his books.
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but due to eye problems—an occupational hazard of mathematicians—he
resigned after five years. In 1768, he became the official mathematician for
the Kurume clan, whose lord was also a famous mathematician, Arima
Yoriyuki (1714-1783); Arima himself published Shauki Sanpo (1769), or Gems
of Mathematics. Around 1780 Fujita became Seki’s fourth successor as head
of the Seki school.

Sadasuke is most remembered for his 1781 book Seiyo Sanpo, (Detailed
Mathematics), but he also helped his son Kagen publish the first collection
of sangaku problems Shinpeki Sanpo, (Sacred Mathematics), which appeared
in 1789. We speak in more detail about the book in chapter 4 and, in the
venerable tradition, have lifted a number of exercises from it. Kagen, who
worked in the same Karume clan as his father, went on in 1807 to publish
the second edition of Sacred Mathematics, the Zoku Shinpeki Sanpo.

Here we present a problem from Sadasuke’s earlier Seiyo Sanpo.

Problem 13
(1) As shown in figure 3.9, two circles of radii a and b kiss each other, as well as touch

the line /at points D and E, respectively. Show that DE = 9ab.

(2) Three positive integers (p, ¢, r) are termed a Pythagorean triple if p* + ¢* = 7%, in
other words, if you can associate them with the sides of a right triangle. The same integers
form a “primitive” Pythagorean triple if p and g are relatively prime, meaning they have no
common divisors other than 1.° Show that (p, ¢, 7) is a primitive Pythagorean triple if

p=2mn, g=m*—n?, r=m’+ n?

for all integers m, nsuch that m > n > 0 (mand n not both odd).
(3) Find five primitive Pythagorean triples for r < 41.

Solutions:

(I) Draw the auxiliary lines shown in figure 3.10. Then use the Pythagorean theorem
to get (a+ b)?= (b— a)*+ DE?, or DE = oab. (This result will be useful in many prob-
lems to come.)

(2) Suppose in the previous problem we want DE= AC to be an integer. Since
DE = 2+/ ab itis sufficient that /4 = 5 and /p = s, where both m and n are integers.
Hence a=n? and b= m?. Let BC= p, another integer. The condition for a Pythagorean
triple is then p=b— a=m? — n?, AC=2mn and AB= b+ a= m?+ n®. For a primitive
Pythagorean triple, m and n should have no common devisor.

If pand gare relatively prime, it follows that p and rand gand rare relatively prime.
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a b
{ { 1 Figure 3.9. Show that DE = 9\ab.

D E

b-a
B

A Oc

d\\b

1 Figure 3.10. Use Pythagoras.
D E

This is the simplest method in traditional Japanese mathematics for finding the
conditions on a primitive Pythagorean triple.

(3) In the Seiyo Sanpo, Sadasuke gives all primitive Pythagorean triples (p, ¢, r) for
0 < r< 1000. For r< 45 they are (3,4,5), (5,12,13), (8,15,17), (7,24,25), (12,35,37),
(20, 21, 29), and (9, 40,41).

Wasan of the Nineteenth Century

Aida Yasuaki (1747-1817)

For many sangaku we are indebted to the students and followers of the geom-
eter Aida Yasuaki,'” a native of Yamagata province in Japan’s northeast. Born
in 1747, at the age of sixteen Aida enrolled in the nearby Okazaki school to
study mathematics. At twenty-three, he went to Edo, working as a samurai
road crew member on the construction of roads and levees. He seems to have
kept this up, apparently writing nothing on mathematics, until the age of
thirty-five when he hung a sangaku at the Atago shrine. Another fellow on the
road crew turned out to be a student of Fujita Sadasuke, which led to an intro-
duction with the master, then head of the Seki school. In a friendly manner
Fujita advised Aida to correct a mistake on the tablet he had hung.

19T the West, sometimes Aida Ammei.
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But Aida took offense at Fujita’s warm advice and organized the Saijyoh
ryu—“The Best Mathematics School”—to stand in opposition to the Seki
ryti—the “Seki school.” A protracted feud resulted, but Aida’s ability in math-
ematics was not in doubt. To be sure, he went slightly mad over mathemat-
ics, writing about 1,300 books, of which eleven were published. “Books”
may be stretching things—the unpublished 1,289, approximately, each
consisted of about twenty pages.

Aida was highly skilled in geometry. His Sanpo Tenshoho, or Algebraic Geom-
etry, consists of 195 volumes, making it undoubtedly the longest mathematics
textbook in history, while his Sanpo Kantuh Jyutsu, (General Methods in Geomelry)
consists of sixty-five volumes. Perhaps Aida’s main contribution was that his
Best Mathematics School did produce many mathematicians in the northeast
of Japan, with the result that many sangaku survive to this day in that part of
the country. Because the reader will encounter a number of sangaku problems
from Aida’s school throughout the book (in particular in chapter 4, problem
37, and chapter 5, problem 21), we do not present any here.

Other Mathematicians of the Late Edo Period

Many Japanese mathematicians contributed to the development of wasan,
too many to name them all. For Sacred Mathematics, one of the most im-
portant is Yamaguchi Kanzan, who is little more than a shadow. He was
born in Suibara, Niigata prefecture circa 1781, he studied mathematics in
Edo and died in 1850. His main legacy is a voluminous travel diary, the
result of six walking tours he took around Japan to record sangaku prob-
lems. Except for two of the tablets Yamaguchi records, all have been lost.
Chapter 7 is devoted to an extended excerpt from his diary, including
problems.

Equally important for us is Yoshida Tameyuki (1819-1892), who was a
samurai in the Owari clan of Nagoya. Yoshida pursued his studies with many
teachers and left numerous manuscripts containing solutions to temple
geometry problems. His solutions are noteworthy for their simplicity, clarity,
and beauty, and we present several of them throughout this book. Fukagawa
Hidetoshi, one of the present authors, attempted to find the site of Yoshida’s
house in Nagoya, but in vain.

A fairly major figure was Uchida Kyo (1805-1882), a mathematical prod-
igy who entered the school of one of Seki’s followers at age eleven and re-
ceived a license to teach at age eighteen. He knew Dutch, and when he
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started his own school he named it “Mathematica.” Uchida’s works covered
many areas, including not only mathematics but astronomy, geography,
and surveying. Renowned as a teacher, his students came from all over
Japan. In 1879, he became a member of the Tokyo Academy under the new
Meiji government. One of his main works was Kokon Sankan of 1832, or
Mathematics, Present and Past, which is noteworthy as it included Soddy’s fa-
mous hexlet theorem of 1937, a problem posted on a sangaku in 1822 (see
problem 16, chapter 6).

Several other nineteenth-century mathematicians contributed to the
further development of the Enri, including Wada Yasushi (1787-1840) and
Uchida Kytumei (?-1868), but because their contributions were mostly in
the area of integration, we defer discussion of their work until chapter 9.
We end this chapter with an elementary problem from Chiba Tanehide
(1775-1849), who was born in a farmhouse but later studied mathematics
in Hasegawa Hiroshi’s school in Edo. At fifty-three, Chiba became a samu-
rai in the Ichinoseki clan of Iwate province. When his book, Sanpo Shinsyo,
or New Mathematics, appeared in 1830, it became one of Japan’s best-selling
mathematics books. It contains an exposition of almost all traditional Japa-
nese mathematics, including the Enri and this exercise, whose solution will
be extremely helpful in all that is to follow.

From figure 3.11, prove the Pythagorean theorem for the right triangle
ABC.

/ Figure 3.11. Prove the Pythagorean theorem.
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Solutions to Selected Cl/\ap’rev* 3 Problems

Problem 5
In Imamura’s Inki Sanka there are no solutions, so we provide a modern
confirmation of the results.

In any first-year geometry text it is shown that the area of a regular
1
2
side, and ais the apothem, the perpendicular distance (altitude) from the

polygon is A = n sa, where n is the number of sides, sis the length of the

center of the polygon to one of the sides. You can easily prove that
g /2 ’
tan(180/n)
and so the area of the polygon is
A=—1D1 ¢
4 tan(180/n)

Pluggingin n=1, ..., 9 gives the values for A near—but not quite the
same as—those listed by Imamura.

For part 2, the reason the square is omitted is that it is trivial, A = 2.
The hexagon is merely six times the area of an equilateral triangle.

For part 3, the altitude of a regular tetrahedron of side sis h = («/6 /3)s
and the volume is (1/3) x (area base) x (altitude) = (\/2/12)s3 =
0.11785113s%. The Inki Sanka’s numerical answer is of course approximate.

Problem 6
(2) Considering, say, the lower triangle, then from figure 3.1 we see

that 15 = 27 From the half-angle formula 15 = (1 — cos 30)/(sin 30) and
50 2r =2 —+/3 = 0.26794. This value was written in the book.

(3) In this case we have 2r=tan 27 = (1 — cos 54)/ sin b4 = 0.50952.
Again, this approximation was written in the book. (In chapter 4,
problem 32, we show how to work out the trigonometric functions of
such strange angles.)

Problem 8
If r ,and R are the radii of the inscribed and circumscribed circles

of an n-sided regular polygon of side 1, then it is easy to show that
sin(180/n) =1/(2R ) and R} =1/4+73.

(1) For the triangle, we use the triple-angle formula sin 36 =— 4 sin® 6 +
3 sin 6, where 6= 180/3. Plugging in sin 8= 1/2R, from above gives the
formula 3R3 —1=0, and with the Pythagorean theorem 12r§ =1=0.
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(2) Here we employ the quadruple-angle formula sin 46 = cos 8
(=8sin® @+ 4sin 6). The same procedure yields 2R? —1 =0 and
2r,—1=0.

(3) In this case the relevant quintuple-angle formula is sin 56 = 16sin°0
— 20sin®0 + bsin6, from which you can show that 5RE — 5R§+ 1=0 and
80r¢ —40rf +1=0.

Problem 9
We have approximately (Matsunaga’s decimals are slightly off )
m=3+0.1415926 = 3 + L

1/0.1415926

S =34 !
7+0.062515 7+1/(1/0.62515)

1 1

=3+ =3+
7+1/15.99 7+1/16

_ 3%

113’

where the last step follows from putting everything over a common denomi-
nator. In traditional Japanese mathematics this method was called reiyaku-
Jyutsu, or “dividing by zero.” Well, if not zero, then very small numbers.

Problem 10
The original solution to this problem consisted only of drawings. We

add a few details. The best way to follow the solutions is to try it with
scissors. Part 1 has two solutions:

Solution A: First, fold the paper in half so that the midpoint M is
marked by the crease (figure 3.12). Unfold. From the endpoints of the
base, cut along the two indicated lines to M, and replace as shown.

Solution B: As in solution A, fold the paper in half to mark the
midpoints Mand Nas in figure 3.13. Unfold. From the endpoints on
the left-hand side, cut along the indicated dashed lines to M and N.

Replace as shown.

B ,7 Y. C \ ’
A D > | B V7 Figure 3.12. Cut on the dashed lines and
oA replace.




M
7
7
N B 7 K
A | Tk A
A 7
Figure 3.13. Cut on the dashed lines and replace. |, D N ’
c>,” D
N N7/

(2) We are given that the sides of the rectangle are in the ratio 1:3, so
referring to figure 3.14 we can assume AD=1 and AB= 3. Hence we
want to construct a side equal V3.

As before, fold the paper from left to right and mark the midpoints
Mand N. Unfold. Next fold the paper from bottom to top and mark the
midpoints /'and E. Now take a point G on the centerline FE such that
AG = AD and erect the perpendicular GH to AG, where H is a point on
ND. (This can be done by folding the side AD such that vertex D sits on
the centerline FE at G. The desired perpendicular is the edge along the
paper from D to the crease. Unfold.) Finally, extend AG to K and mark
the point Jon MB such that MJ = HD.

By construction AG= AD and, since Gis on the centerline, AG=
AD = DG, which implies that ZGAD = 60° and ZMAK = 30" Hence,
AMAK is a 30—60-90 triangle and so AM/ AK = «/g /2. Since we folded
the paper such that AM=3/2, we get AK = \3, the side length of the
desired square. Moreover, all the triangles in the figure are 30-60-90.
With this fact you can convince yourself that /[N + HG = V3 as well, which
allows construction of the square on the right of figure 3.14.

(3) For this part we want to construct a square of side 5 from the
five unit squares in figure 3.7. We present the original diagram solu-
tions in figure 3.15 and leave the detailed proofs to the reader.

N JH G
K{~ 7
B J .M A S ,/
N t T - S My
\ ! - ;LD
RN e At [— o
\ -—<X------ ~
N |//’\-/<\ 1 // \\ A
\Nr 7 »
\lK \\ . / //K
LAl / /
C N H D / y
/ /
Alz .
N JH G

Figure 3.14. Cut and replace as shown.
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/ /
\ _ ® / /
\ \ [ ] // / /
\ o N — /o,
\ - 4 /7 X
/ L
/ VAN

- \
_ > X N\
° / S < - ) \
)/ RN ‘O Figure 3.15. The dashed hypot-
7 o i o \ enuses of the right triangles have
/ -
/ //>’ °o length /5.
Problem 12

We give Ajima’s original solution without comment, except to say
that he actually carried out his calculations to fourteen digits, which a
scientific software package shows are correct!

(1

10°9=1019/10%1 = 7.943285; 108 = 10°9/10%! = 6.309578;
10%7=10%8/10%! = 5.011878; 106 = 10%7/10%! = 3.981078;
1095 =10%6/10%! = 3.162284; 10°* = 10°°/10%! = 2.511892;
10°% =10%4/10%! = 1.995267; 10°% = 10°2/10°! = 1.584897.

(2)

10099 = 10°10/1000" = 1.230268; 1008 = 10999/1009" = 1.202264;
10007 = 10008 /10001 = 1.174897; 1099 = 10°97/10°! = 1.148153;
10005 = 10°96/10°0! = 1.122018; 1004 = 10%9%/1000" = 1.096478;
10003 = 10004 /1001 = 1.071519; 10002 = 10°3/100" = 1.047128,

(3)
10256 = 10% x 10%5 x 10°96 = 100 x 3.162284 x 1.148152 = 363.0786.



Plate 4.1. A replica of a sangaku that was hung in 1879 in the Aga shrine and
measures 163 cm by 58 cm. It contains several problems quite similar to several
of those in this chapter (see problems 30-35).
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éasiertemple Geometry

pv‘oblems

Confucius says, “You should devote
all your time to study, forgetting to
have meals and going without s|eep."
His words are precious to us. Since
J was a boy, J have been studying
mathematics and read many books on
mathematics. When J had any
questions, J visited and asked
mathematician Ono Eijyu. J appreci-
ate my master’s ‘reac’/\ings. For his
kindness, J will l/\omg a sangaku in
this temple.

—Jnscription on a Sanga/«/t ]/\bmg in

1828 by Saits Kuninori at the

Kitamuki Kannon ’remple

-Cemple geometry problems, as may now be evident, are not found in
temples alone. During the Edo period, twelve collections of sangaku prob-
lems appeared in print and hundreds of other problems were recorded in
unpublished manuscripts. What’s more, some devotees who hung sangaku
unrepentantly swiped problems from earlier collections. Neither the tab-
lets nor many of the books are to be thought of as texts in the modern
sense; they do not in any way constitute a coherent exposition of traditional
Japanese mathematics. On a single sangaku, a problem that a twelve-year-
old might solve can be found next to one that would stop a graduate stu-
dent in his or her tracks. In part this is because sangaku were frequently
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created by whole groups of people, perhaps an entire class at a juku, and
undoubtedly the students were at many different levels.

This state of affairs makes selecting and presenting sangaku problems
something of a challenge. We have chosen to arrange the problems more
or less in order of difficulty rather than by source, and, where possible, to
group similar problems together. Again, these exercises were not “problem
sets” developed by an instructor for a mathematics curriculum, but are
largely the random result of the labors of aficionados solving geometrical
riddles that pleased them.

In chapters 4 through 6, we present a selection of about ninety temple
geometry problems, ranging from the trivial to the nearly impossible.
Most of those in this particular chapter, devoted to easier problems,
come from the tablets themselves, a few of which can be seen in the color
section of the book. These tablets were among over one hundred dis-
played at the first exhibit of sangaku, discussed in the Preface. The re-
mainder of the problems come from some of the collections and
manuscripts just mentioned. Of the published collections of sangaku, the
first and probably the most famous is that of Fujita Kagen. Fujita’s book,
Shinpeki Sanpo, or Sacred Mathematics, appeared in 1789 and contains
problems from twenty-six tablets hung between 1767 and 1789. For a sec-
ond edition of 1796, Fujita added problems from twenty-two tablets hung
between 1790 and 1796. The shrines in which the tablets were found
were located over a wide area in Japan, with the consequence that the
name of Fujita spread over an equally wide area. In an 1807 sequel, Fujita
recorded fifty tablets hung from 1796 to 1806. Of the 48 sangaku re-
corded in the first book, all but one, from the Sakurai shrine in Aichi
prefecture, have been destroyed or lost. Of the fifty recorded in the sec-
ond, only one tablet hung in the Isaniha shrine in Ehime prefecture has
survived.

In terms of the remaining collections, although one of the books ap-
peared in 1873, after the fall of the Tokugawa shogunate, all the problems
date from the earlier Edo period, before Western influence made itself felt.
We also quote a number of problems from unpublished manuscripts. For
each of the problems and solutions, we indicate the author—if a name has
come down to us—and the source, whether a tablet, book, or manuscript.
The books, in the Genroku spirit, are all printed on rice paper with wooden
blocks and are themselves works of art. Most of them are quite rare and
the solutions we present from them have generally never been seen in the
West.
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Plate 4.2. Another woodblock print from the Jinko-ki, this time from
a 1778 edition.

_Che first three exercises in this chapter do not actually involve geometry
but are so-called diophantine problems—algebraic problems that require
integer solutions.! They are much in the spirit of some of the Chinese prob-
lems from chapter 2. The remaining problems virtually all deal in plain
plane geometry, although a few of the final ones additionally require sim-
ple calculus. We trust that most will be suitable for high school students.
They also provide a useful “warmup” for the more difficult puzzles of chap-
ters b and 6, as they utilize some of the same basic techniques found every-
where in geometry, East and West. For the first problems, we often supply
the required “auxiliary lines” in the solution figures, to get readers going.
But we do not do this all the time, and somewhat less frequently as the

"Named after Diophantus of Alexandria (c. A.D. 200—c. 284), sometimes called the
“father of algebra.”
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chapter progresses. Our hope is that diligent students will take up the task
themselves.

In doing the exercises, readers may occasionally wonder where the strange
numbers come from: “If 2r= 35.5, find «.” “If d= 3.62438 and 2/ = 0.34, find
2r” Many of the sangaku posters chose seemingly bizarre parameters in
order to simplify computation of the final answer. A good example is prob-
lem 13 in chapter 6. Finally, a word about significant figures. Although
teachers always admonish students not to engage in “meaningless preci-
sion” by using too many significant figures, when there has been no dis-
agreement between our answer and the original, we often display a large
number of significant figures in the answers to numerical problems. In
such cases, the number of significant figures is that found on the original
tablet.

Answers and solutions can be found at the end of the chapter.

Problem 1
The tablet on which this problem was written was hung by Ufu Chosaburé in 1743 at

the Kurasako Kannon temple. Its size is 76 cm by 33 cm.

There are 50 chickens and rabbits. The total number of feet is 122. How many chick-
ens and how many rabbits are there?

The original solution can be found on page 121.

Problem 2
Tanikawa Taizo hung the tablet containing this problem in 1846 at the Yuisin temple

of Chita-gun, Aichi prefecture. It is 98 cm wide and 48 cm high. The sangaku was un-
known until 1979 when someone visited the temple, found it empty and abandoned, and
discovered the tablet.

A circular road A that is 48 km in circumference touches at point Panother circular
road B of circumference 32 km. (See Figure 4.1.) A cow and a horse start walking from
the point Palong the road A and B, respectively. The cow walks 8 km per day and the
horse walks 12 km per day. How many days later days later do the cow and horse meet
again at P?

The solution is on page 121.
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Figure 4.1. How many days after starting out from Pwill the
horse and cow meet?

Problem 3
The tablet on which this problem was written was hung by Hara Toyokatsu in 1829 at

the Katsurahama shrine in Akigun of Hiroshima prefecture and measures 81 cm by
46 cm. The problem itself was quoted from the 1797 book Saitei Sanpo, or Revision of
Certain Problems, by Fujita Kagen.

As shown in figure 4.2, three circles A, B, and C of circumference 56 +2/3 km,
30+ 5/7 km, and 13 + 3/4 kilometer, respectively, all pass through point P. Three horses
a, b, and ¢ start to walk around A, B, and C from P simultaneously. Horse a’s speed is
8 +41/1,000 km per day, b’s is 6 + 123/4,000 km per day, and ¢’s is 4 + 41/2,000 km per
day. How many days will pass before the three horses meet again at P?

Answer: The horses meet again 20,000 days after they set out. The solution can be found
on page 121.

]

» Figure 4.2. How many days will pass before the horses meet
again at P?
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Problem 4
This problem comes from the collection Suri Shinpen, or Mathematics of Shrines and

Temples by Saito Gigi (1816—-1889). In this 1860 book, Saitd records thirty-four tablets that
were hung between 1843 and 1860. Most of the problems involved high-level calculus.
This easy one was originally proposed by Nakasone Munekuni and hung in 1856 at the

Haruna shrine in Haruna town, Gumma prefecture.

The centers of a loop of n circles of radius rform the vertices of an n-gon, as shown in
figure 4.3. Let S, be the sum of the areas of the circles inside, and S, the sum of the areas

of circles outside. Show that So— 8, = 27mr2.

The solution is left as an exercise for the reader.

Figure 4.3. Show that white — grey = 2712

Problem 5
This elementary exercise can be seen as the second one from the bottom left corner

on the sangaku of the the Katayamahiko shrine, color plate 5.

A circle of radius ris inscribed in an isosceles triangle with sides a =12 and 6= 10 (see

figure 4.4). Find r.
Answer: 2r= 6.

The solution is on page 122.

Figure 4.4. If a=12 and =10, find ~
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Problem 6
We know of this problem from the unpublished manuscript finbyo Bukkaku Sangakushi, or

Collection of Sangaku from the Aida School, written by Aida Yasuaki (1747-1817) at an unknown
date. The problem was originally proposed in 1800 by Kobata Atsukuni, a student of the
Aida school, and presented on a tablet to the Kanzeond6 temple of Toba castle town.

A big circle of diameter 2R = 100 inscribes a large and small equilateral triangle, as
shown in figure 4.5. Find the side ¢ (in terms of R) of the small equilateral triangle ABC
if A is the midpoint of one side of the large triangle.

See page 123 for a solution.

Figure 4.5. Find ¢in terms of R.

Problem 7
This problem can be seen as the second on the top left of the Katayamahiko shrine

sangaku, color plate 5.

Two circles of radius rare tangent to the line /. As shown in figure 4.6, a square of side
¢ touches both circles. Find ¢ in terms of .

The answer is given on page 123.

Figure 4.6. Find ¢in terms of »
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Problem 8
This problem is the second from the bottom right corner on the Katayamahiko shrine
tablet, color plate 5.

A circle of radius rinscribes three circles of radius ¢, the centers of which form an
equilateral triangle of side 2¢ (figure 4.7). Find ¢in terms of .

Example: 1f r= 10, then t=4.64.

The answer and solution are on page 123.

Figure 4.7. Find ¢in terms of r.

Problem 9
Kobayashi Syouta proposed this problem on a tablet that was hung in the Shimizu

shrine, Nagano prefecture, in 1828.

In a big square of side 4, a smaller square of side 27, and a circle of radius r touch the big
square, as shown in figure 4.8. Find r in terms of a.

The answer and solution can be found on page 124. \

2r

Figure 4.8. Find r in terms of a.
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Problem 10
This problem is the third from the left on the Meiseirinji sangaku, color plate 8. It was

proposed by Tanabe Shigetoshi, aged fifteen.

In a blue equilateral triangle, three “green” (light) circles of radius a, four “red”
(dark) circles of radius b, and six white circles of radius ¢ touch each other as shown in
Figure 4.9. If Ris the radius of the outer circle, and ris the radius of dashed circle, find ¢
in terms of ©.

A solution can be found on page 124.

Figure 4.9. Find the radius of the small white
circles in terms of 7, the radius of the dashed
circle.

Problem 11
This problem is the leftmost problem on the gilded Sugawara sangaku,

color plate 7.
As shown in figure 4.10, a square of side ¢ is inscribed in a given right triangle with
sides a, b, ¢. If the area of triangle is S= 163,350 and the hypotenuse ¢= 825, then find q,

b, t, n, and the distance d.

The answer and solution can be found on page 124.
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Figure 4.10. Given the area Sand hypotenuse ¢, find
a, b, t, n,and d.

Problem 12
This is the rightmost problem on the Sugawara tablet, color plate 7.

As shown in figure 4.11, we have one circle inscribed in the outer square, a rhombus,
two larger circles of radius R, and two smaller circles of radius » The side of the rhombus
b is the same length as the distance between the two horizontal lines drawn in the
square. If 2r=35.5, find a, am, b, R, and d. (As in traditional Japanese mathematics,? take
r=3.16.)

Answer: a= 319.507; ar=1,009.6428; b= 184.472; 2R=106.5; d = 67.5172.

The full solution can be found on page 124.

Figure 4.11. Find a, b, d, , and R. d

2Although we saw in chapter 2 that ancient Chinese and Japanese mathematicians had
calculated 7 to many decimal places, traditional Japanese mathematicians found it simpler
to use w=3.16.
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Problem 13
Watanabe Kiichi proposed this problem, which is the twelfth from the right on the

Abe no Monjuin sangaku, color plate 11.

As shown in figure 4.12, an equilateral triangle with side ¢, a square of side s and a
circle touch each other in a right triangle ABC with vertical side a. Find ¢ in terms of a.

Answer:t = (\/g —1a.

The solution can be found on page 124.

Figure 4.12. Find ¢in terms of a.

C A

Problem 14
Proposed by Yamasaki Tsugujirou, this problem is the second problem from the right

on the Meiseirinji tablet, color plate 8.

In a rhombus, there are two red circles of radius 7, two white circles of radius r;, and

five blue circles of radius 7, (see figure 4.13.). Show that Ty = r,/2, or blue = white/2.

A full solution to the problem is given on page 124.

Figure 4.13. Show that the radius of the “blue”
circles (dark) is one-half the radius of the
“white” circles (white).
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Problem 15
This problem is the third from the bottom right corner on the Katayamahiko shrine

sangaku, color plate 5. It also appears on the newly discovered tablet from the Ubara
shrine (see problem 31).

As shown in figure 4.14, two circles of radius rare inscribed in a square and touch
each other at the center. Each of two smaller circles with radius ¢ touches two sides of the

square as well as the common tangent between the two larger circles. Find ¢in terms of »

The answer and solution can be found on page 125.

Figure 4.14. Find tin terms of r.

Problem 16
This problem, written on a tablet presented in 1837 to the Ohsu Kannon temple of

Nagoya city, Aichi prefecture, was originally proposed by Mizuno Tsuneyuki and
recorded in the unpublished manuscript, Sangaku of Ohsu Kannon by Nagata Toshi-
masa, 1837.

Four circles of radius 7, whose centers form a rectangle with one side equal to 27, are
inscribed in a big circle of radius R. As shown in figure 4.15, draw one small circle of
radius p that touches the four circles 7, and draw two small circles of radius ¢ that touch
two of the circles r externally and touch Rinternally. Find pin terms of ¢.

A solution can be found on page 125.
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Problem 17

101

Figure 4.15. Find pin terms of ¢.

This problem, presented by Kobayashi Nobutomo, also comes from the Shimizu shrine

sangaku, 1828.

As shown in figure 4.16, a small circle of radius b sits on the point of contact between

two squares of side 26 that in turn sit on a line /. A big circle of radius a touches the line

[, the nearest square, and the small circle. Find a in terms of b.

The answer and solution are on page 126.

2b

Problem 18

Figure 4.16. Find ain terms of b.

Gunji Senuemon was the proposer of this problem, which is the sixth from the left

on the Abe no Monjuin sangaku, color plate 11.
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From point O, the center of a circle with radius ¢, draw two tangents to the circle O,
which also has radius ¢ and which touches circle O externally. Then, as shown in figure
4.17, draw a large circle of radius R that passes through O and touches O’ internally.

Draw two more circles of radius b and a small circle of radius a. Find R, b, and ¢ in
terms of a.

A solution is on page 127.

Figure 4.17. Find R, b, and cin terms of a.

Problem 19
This problem was written on a tablet hung in 1842 at the Atsuta shrine of Nagoya city,
Aichi prefecture. It was proposed by Nagata Takamichi and recorded in the manuscript
Atsutamiya Hono Sandai, or Sangaku of Atsuta Shrine, whose date and author are unknown.

Take any point C on the segment AB shown in figure 4.18 and draw two circles of
diameters AC and BC that are tangent at C. From point A, draw two tangents to circle s,
and from point B draw two tangents to circle £. Now consider two circles of radius pand ¢
that touch the tangents and pass through point C. Show p = ¢ for any C.

A proof is left as an exercise for the reader.
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Figure 4.18. Show p = ¢ for any C.

Problem 20
This problem can be seen as the second from the right top corner of the Katayama-

hiko shrine sangaku, color plate 5.

We have a field in the shape of a right triangle ABC with AC =30 m and BC= 40 m.
As shown in figure 4.19, we want to plow a path DEFGHIJ of width 2 m so that the three
remaining interior sections have the same area. Find BE, DE, HC, JC, Al, and FG.

Answer: BE=21.7743; DE=16.331; HC=16.2255; JC=10.9577; AI = 17.0423 and
FG=4.873.

See page 127 for a solution.

A
E s
D

G |

J

S
S
B c Figure 4.19. Find BE, DE, HC, JC, A, and FG.
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Problem 21
This problem is the fourth from the right top corner on the sangaku of Katayamahiko
shrine, color plate 5.

On a circular field of diameter 2r= 100 m, we make four lines of length ¢such that
they divide the circle into five equal areas §, one of which is a square of side d (see figure

4.20). Find ¢ and d, using 7= 3.16.
d
d °
t

S
Figure 4.20. Find tand d in terms of the radius of the circle, r. K/

Problem 22
The tablet from which this problem was taken was hung in 1847 in the Akahagi

Kannon temple in Ichinoseki city. Its size is 188 cm by 61 cm. The problem itself was

Answer on tablet: t = 69.75494 and d = 39.7494.

The solution is on page 128.

proposed by Sato Naosue, a thirteen-year-old boy.

Two circles of radius r and two of radius ¢are inscribed in a square, as shown in
figure 4.21. The square itself is inscribed in a large right triangle and, as illustrated, two
circles of radii Rand r are inscribed in the small right triangles outside the square. Show
that R=2t.

See page 128 for the solution.
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Figure 4.21. Show that R= 2.

Problem 23
This problem is the fourth from the right on the Sugawara tablet, color plate 7.

As shown in figure 4.22, a square of side ¢ is inscribed in an equilateral triangle of side
k. Two smaller squares of sides ¢ and b are inscribed between the equilateral triangle and
square ¢. A smaller equilateral triangle of side d is inscribed within square ¢ and a circle
of radius ris inscribed within square d. If a=7.8179, find b, ¢, d, k, and 7.

The answer and solution can be found on page 128.

/ ¢ Figure 4.22. Find b, ¢, d, k, and rin terms of a.
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Problem 24
This problem is the fifth from the right on the Sugawara sangaku, color plate 7.

In a circle of radius R, a rectangle of width @+ b and height ¢ is inscribed (figure 4.23).
Inscribed in the rectangle is a rhombus with short diagonal d. The diameter of the circle
inscribed in the right triangles is 2r= 30 and a=45. Find b, d, 2R, 27R (circumference),
and ¢, where m=3.16.

The answer and solution can be found on page 129.

Caution: From approximalely this point on the problems become slightly more difficult, involving

more trigonometry.

Figure 4.23. Given aand 7, find b, d, ¢, t, and R.

Problem 25
Here we have a rare example of a problem proposed by a woman, Okuda Tsume. It can

be seen as the sixth problem from the right on the Meiseirinji sangaku, color plate 8.

In a circle of diameter AB= 2R, draw two arcs of radius Rwith centers A and B, respec-
tively, and ten inscribed circles, two of diameter R (light); four “red” (dark) of radius ¢,
and four “blue” (lighter) of radius ¢’ (figure 4.24). Show that (=" = R/6.

A solution is on page 129.

Problem 26
During the later Edo period it became popular to consider problems that could be

drawn upon folding fans, that is, upon a sector of an annulus. This example can be
found on the top right corner of the Katayamahiko shrine tablet, color plate 5.
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Figure 4.24. If Ris the radius of the large circle, show that
the radius ¢ of the small “red” (dark) circles and the radius
¢’ of the small “blue” circles (lighter) is t=¢ = R/6.

As shown in figure 4.25, in a sector of radius R, two circles of radius r are tangent to
each other and touch the sector internally. A small circle of radius ¢ touches both the
sector and a chord of length d. If d=3.62438 and 2¢= 0.34, find 2n.

Answer on tablet: 2r= 3.025.

The solution can be found on page 129.

Figure 4.25. Given d, find the radii tand r.

Problem 27
This problem was originally proposed by Takeda Sadatada on a tablet hung at the

Atago shrine of Tokyo in 1830. Our knowledge of it comes from the 1832 book Kokon
Sankan, or Mathematics, Past and Present, by Uchida Kyo (1805-1882). In this work, Uchida
recorded problems from twenty-three tablets hung between 1820 and 1830. Generally

the problems are difficult; this one is not so hard.

Two squares of sides b and d touch each other at a vertex, as shown in figure 4.26.
Each of the squares b and d also touches two other squares with sides a and ¢, as shown.
Find d in terms of a, b and .



108 Chapter 4

Figure 4.26. Find din terms of a, b, and c.

qe a2+62_b2'
2

Example:1f a=13,b=9, c=11, then d=8.

Answer:

The solution is on page 130.

Problem 28
The tablet on which this problem was found was hung by a twelve-year-old boy, Imahori

Yakichi, in 1790 at the Nagaoka Tenman shrine of Kyoto and measures 58 cm by 24 cm.

As shown in figure 4.27, four circles of radius a and four circles of radius & touch a
square of side k. Find £ in terms of a and b.

Figure 4.27. Find k in terms of a and b.
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Plate 4.3. The original illustration for
problem 27, from Uchida Kyo’s 1832
book, Kokon Sankan, or Mathematics,
Past and Present. (Aichi University of
Education Library.)

Example: If 2a=5,2b= 3, then k= 4.4465, which is not written on the tablet.

See page 131 for the solution.

Problem 29
It6 Tsunehiro of the Itd Sotaro school, proposed this problem in 1849.

The tablet, which measures 245 cm by 47 cm, was hung in Senhoku city’s Kumano shrine.

Triangle ABCis inscribed in a circle of diameter 2r (see figure 4.28). CH is
perpendicular to AB. Find r in terms of BC, AC, and CH.

Example: 1If BC=5, AC=8, and CH = 4, then 2r=10.

See page 131 for the answer and a solution.
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C
B ;‘ A
Figure 4.28. Find the radius of the circle rin terms of BC, AC,
and CH
Problem 30

This problem can be seen as the third from the right top corner of the Katayamahiko
shrine sangaku, color plate 5.

A regular hexagon ABCDEF inscribes two equilateral triangles ACE and BDF, which in
turn inscribe a circle of radius r. Six smaller circles of radius ¢ are inscribed in, for
example, AFE, as shown in figure 4.29. Find ¢ in terms of r.

Result on tablet: If r=10 then t= 4.226.

The answer and a solution can be found on page 132.

Figure 4.29. Find tin terms of 7, the radius of the inner
circle.
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Problem 31
We present here a problem from the most recently discovered sangaku, which was

found by Mr. Hori Yoji at the Ubara shrine of Toyama in 2005. It dates from 1879 and
measures 76 cm by 26 cm. (See color plate 13.)

As shown in figure 4.30, a ring of eight small circles of radius /, whose centers lie on
the vertices of a regular octagon, is circumscribed by a circle of radius Rand circum-

scribes a circle of radius . Find R and r in terms of ¢.

The solution is given on page 132.

Figure 4.30. Find Rand rin terms of ¢

Problem 32
The tablet containing this problem was hung in the Kitano shrine of Gumma’s Fujioka

city in 1891 by the Kishi Mitsutomo school. Its width is 121 cm and height 186 cm.

As shown in figure 4.31, a circle of radius ris surrounded by a loop of five equal circles
of radius R. Find rin terms of R.

Example: If 2R=1.8, then 2r=1.26. . ..

The solution is given on page 133.

Problem 33
This problem, proposed by Shirakawa Katsunao, can be seen as the fifth one from the

right on the Mizuho sangaku, color plate 9. Advice: Do the previous problem first.
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Figure 4.31. Find rin terms of R “

As shown in figure 4.32, five circles of radius ¢ touch the large circle of radius R
internally. A circle of radius ris inscribed in the pentagram. Show that ¢ = v0.8r.

The answer and a solution can be found on page 133.

Figure 4.32. Show that ¢ = +/0.8r.

Problem 34
This is the fifth problem from the left on the Abe no Monjuin sangaku, color plate 11.

Advice: Follow the previous advice.

A big circle inscribes two equilateral triangles, each of side 3a. As shown in figure 4.33
six small circles of radius r touch the big circle and the two triangles. Find rin terms of a.

Answer: v = (9 — 5«/%)&.

See page 134 for a solution.
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Figure 4.33. Find the radius of the small circles, 7 in terms of
the sides of the equilateral triangles, a.

Problem 35
This problem can be seen as the one on the top left of the Katayamahiko shrine

sangaku, color plate 5. Advice: ditto.

As shown in figure 4.34, four circles of radius r and four congruent equilateral
triangles of side a touch a big circle of radius R internally and also touch a small square
of the side a. Find rin terms of R.

Answer:

T_[«@—«/EHJR
- \E+2«@+1

Example: 1If R= 10, then r=2.37.

Turn to page 135 for the solution.

Figure 4.34. Find rin terms of R.
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Problem 36
This problem is the one on the bottom left corner of the Katayamahiko shrine san-

gaku, color plate 5.

As shown in figure 4.35, an equilateral triangle with side ais inscribed in a square also
of side g, along with and four circles, including two of radius ¢and one of radius . Find ¢
in terms of .

The answer and solution can be found on page 135.

Figure 4.35. Find ¢in terms of r.

Problem 37
This problem, dating from 1805, comes from the Suwa shrine sangaku and is mentioned

in the diary of Yamaguchi Kanzan (chapter 7).

We are given a rectangle ABCD, as shown in figure 4.36, with AB > BC. A circle is
inscribed such that it touches three sides of the rectangle, AB, AD, and DC. The diagonal
BD intersects the circle at two points Pand Q. Find PQ in terms of ABand BC.

See page 136 for the solution and an example.

Figure 4.36. Find PQ in terms of AB and BC.

C D
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Problem 38
Dating from 1819, this problem comes from Yamaguchi Kanzan’s diary

(chapter 7).

We stick pins into the position of each vertex of a regular dodecagon (twelve sides), as
shown figure 4.37. Then we take a string of length /=150 cm and wrap it around the
pins, as shown. This forms a small regular dodecahedron in the center. Find the length
of the side s of the small dodecahedron.

The solution is on page 136.

Figure 4.37. Find the side-length of the central dodeca-
hedron in terms of the total length of the string.

Problem 39
This problem is the third one from the bottom left of the Katayamahiko shrine
sangaku, color plate 5.
A circle of radius R= 5 inscribes a regular pentagon of side a. Find a.

Answer: a=5.87.

On page 137 we give a traditional solution from the 1810 book Sanpo Tenshoho Shinan, or
Guidebook to Algebra and Geometry, by Aida Yasuaki (chapter 3).
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Figure 4.38. Find ain terms of R.

Problem 40
The tablet containing this problem was hung in Senhoku city’s Kumano shrine in 1858

by Nagayoshi Nobuhiro of the Ito Yasusada school. The sangaku is 89 cm wide and 38 cm

high. For decades the tablet had gone unrecognized as a sangaku and was on the verge of
being discarded when, in 2005, Fukagawa Hidetoshi visited the shrine, and, recognizing

its value, had the tablet restored.

We have N balls. First, we stack them with 19 balls on the top and m balls on the

bottom, as on the left side of figure 4.39. Then we can stack them with 6 balls on top and
n on the bottom, as on the right side of the figure. Find N, m, and n.

The solution is on page 138.

Figure 4.39. Find N, m, and n.

Problem 41
This problem is the second from the right on the Sugawara sangaku, color plate 7.

Awine vat in the form of a big triangular pyramid of height a whose base is an equilat-
eral triangle of side ais full (see figure 4.40). A man takes away wine from the pyramid
using a cask of 125 liters and then adds as much water to the vat as the remaining wine.
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He now takes away one cask of the watered wine and again adds as much water as the
remaining mixture. After the tenth trial the man takes all that remains. Find the volume
V, of the vat, and a.

Answer: V,=249.75508592 . . . liters; a=12.00549 ... cm.

The full solution can be found on page 138.

Figure 4.40. A pyramidical wine vat has a base in the form of an equilateral
triangle with side a. The volume of the vatis V.

Caution: Calculus begins here.

Problem 42
We know of this problem through Fujita Kagen’s book Zoku Shinpeki Sanpo. The

problem was originally proposed 1806 by Hotta Sensuke, a student of the Fujita
school, and written on a tablet hung in the Gikyosha shrine of Niikappugun,
Hokkaido.

c A Figure 4.41. Maximize the area of the rectangle.
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Take a point D on the hypotenuse AB of the right triangle shown in figure 4.41.

Assuming the position of D can be varied along AB, find DE and DF in terms of ACand
BCsuch that the area of rectangle DECFis maximized.

Turn to page 139 for the answer and a traditional solution.

Problem 43

This problem was hung in 1909 by Kojima Yokichi and found in the Toz6ji temple of
Kakuda city, Miyagi prefecture. The tablet is 72 cm high and 162 cm wide.

A right triangle ABCwith side AB= xand BC= cintersects a square with side ACat the
point . (See figure 4.42). Assuming x is variable, find the value of x in terms of ¢ that
maximizes the shaded portion of the triangle.

Example: If ¢=12, then x=4.

You can find the full solution on page 139.

Figure 4.42. Find x in terms of ¢such that the shaded
area is a maximum.

Problem 44
This problem was written on a tablet hung in 1821 at the Ohma Shinmeisya shrine of
Yamada gun (village), Gumma prefecture, and later recorded in Saishi Shinzan, an

unpublished manuscript edited by Nakamura Tokikazu that contains a record of 208
sangaku dating from 1731 to 1828.

As shown in figure 4.43 we are given a rhombus ABCD with side a. Its diagonal BD = 2¢
is considered variable. Let S(¢) be the area of the rhombus minus the area of the white

square whose diagonal is BD = 2t. Find the side x of the square in terms of a when S(¢) is
a maximum.

A solution can be found on page 139.
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Figure 4.43. Find x in terms of a when the area of the
rhombus minus the area of the square is maximized.

Problem 45

We know of this problem from the 1873 book Juntendo Sanpu, or The Fukuda School of
Mathematics, by Fukuda Riken (1815-1889). In his book, Fukuda records problems from
fifteen sangaku, most of which are very difficult. This selection, proposed by Fukuda’s
disciple Murai Sukehisa, was originally written on a tablet hung around 1846 at the
Sumiyoshi shrine of Osaka.

As shown in figure 4.44, a square ABCD with side asits on a line /. An identical square
EFGH touches [ at a point E, which is considered variable, and also touches square ABCD

at a point F'on CD. Draw PH perpendicular to / such that the extensions of BG and PH
meet at 7. Maximize P7'in terms of a.

Answer: PT = (\/10«/3 - 22 4+ 1)a.

We give a solution on page 140.

a ! Figure 4.44. Maximize PTin terms of a.
P E D A
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Problem 46
Hung by three merchants in the Yukyuzan shrine of Nagaoka in 1801, this problem

survives today and is mentioned by Yamaguchi Kanzan in his diary (chapter 7).

We are given a circle with diameter 2rand chord AB, as shown in figure 4.45. The
segment MNis the perpendicular bisector of AB. From A and B, draw two lines through
the midpoint of MN and inscribe four circles, two of radius s and two of radius ¢ Find
tin terms of rwhen AB — MNis maximized.

ot ot

Figure 4.45. Find ¢in terms of rfor (AB — MN) maximized.

Turn to page 141 for a solution.

Problem 47
The problem presented here was drawn on a tiny panel placed in the eaves of a small

temple that was destroyed around 1864. Someone managed to save the panel, setting it in
the ceiling of another room of the Shiokawa Kokaido building in Nagano’s Susaka city.

A

Figure 4.46. Maximize y as a function of x assuming BC = a y

is constant. B C
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No one realized that the panel was a sangaku until 1997, when Mr. Kitahara Isao noticed
the beautiful problem on it. The size of the panel is only 41 cm by 38 cm.

In a given right triangle ABC, draw a circle of radius x = ACwhose center is the vertex
A (see figure 4.46). Consider a square, one of whose sides lies on BC and touches both
the circle and AB. If yis the length of the side of the square, and BCis taken to be the
constant a, find the maximum value of y as a function of x.

Answer:

Jo -1

= a.

ymax 2

Both the original and a modern solution to the problem are given on page 142.

Solutions to Cl/\apfey‘ 4 Problems

Problem 1
Here is the original solution to the problem:

If rabbits were chickens then the total number of feet would be 100,
so we know that the extra 22 feet are all from the rabbits, which
implies 11 rabbits and 39 chickens.

Algebraically, the solution can be expressed as follows: If xis
the number of chickens and y is the number of rabbits, then
122 =2x+ 4y = 2x+ 2y+ 2y=2(x+y) + 2y= 100 + 2y; hence 2y =22
and y=11.

Problem 2
Assume that d days after starting out, the cow and the horse meet

again at P. Then, because the cow is walking at 8 km per day and
completes a whole number of revolutions, we must have 8d = 48m,
where m is an integer. Similarly, for the horse, 12d = 32n, where n is
another integer. Dividing the two equations gives m/n=4/9. But since
we are looking for the smallest possible integers, we have simply m =4
and n=9. Thus d= 24 days.

Problem 3
Here is the original solution:
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Assume that, n days after they set out, the three horses meet at
point P. Then, similarly to the previous problem,

8+i n= 56+g a,
1,000 3
L) (5,
4,000 7

a2 1342,

2,000 4
where a, b, and ¢ are the numbers of revolutions each horse makes.
Multiplying out these equations gives 1,419n=10,0004, 3,927n =
20,0000, and 731n = 2,500¢. Consequently, n is the least common

multiple of 10,000, 20,000, and 2,500, or n=20,000.
[Another way of saying this is that because 3,927 and 20,000 have no

| common divisors, and similarly for the other coefficients, we have

G n=20,0000" = 10,000’ = 2,500¢, where b’ = /3,927, d’ = a/1,419, and
¢’ = ¢/731 must be integers. The smallest possible integral value of n is

obtained by setting 4" = 1, giving n = 20,000.]

Problem 4
The solution is left to the reader.

Problem 5
Draw the auxiliary lines shown in figure 4.47. Then, if % is the alti-
tude of the triangle, similar triangles shows that r/(h— ) = a/2b, and so
2r=2ah/(a+ 2b). From the Pythagorean theorem, 2= 8, giving 2r= 6.

Figure 4.47. Draw the altitude, and drop a perpendicular
to a side b. Consider similar triangles.
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Problem 6
Call the center of the circle O, as in figure 4.48. Since the big

triangle is equilateral, OA = R/2. Also, OB= R and so by Pythagoras
R? = (R/2+(3/2)¢)? +(q/2)?. Solving for ¢ quickly yields,
q= ((«/E - «/g)/4)R = 26.7 which was written on the tablet.

Figure 4.48. Draw the radius of the circle.

Problem 7
A single application of the Pythagorean theorem yields a quadratic

equation with one solution consistent with the figure: ¢= 27/5.

Figure 4.49. Consider Pythagoras.

Problem 8 ‘

By inspection of figure 4.7, the distance between the center of circle Y
rand one of the smaller circles ¢is r — ¢. Since the centers of the circles ‘
tlie on an equilateral triangle, we then have cos30° = ¢/(r —¢), which

gives ¢ = /3r/(2+/3) = (243 — 3)r = 0.464r.
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Problem 9
Draw in a diagonal from the southwest to the northeast corner of the

large square ain figure 4.8. Then we see that V2a = 242 + 17 ++/2r, or,
solving for 7,

r= «/§a
3«/§+1'

Problem 10
By inspection of figure 4.9 one easily sees that r=3b+ 4¢, R= b+ 2a,

R=5b+4¢, and a+ b= 2b+ 4c. Solving these equations simultaneously
yields b= 2¢, a= 6¢, and r= 10c.

Problem 11
We notice that S=6 x 165% and ¢ =5 x 165. Thus, we have a right

triangle with sides 3, 4, and 5 (in units of 165). Hence a= 495 and
b=660. By similar triangles, we have b:a= (b— ¢):t, which gives
t=ab/(a+ b) = 282.85. By inspection of figure 4.10 n = t/«/g = 200.01,
and because dis an altitude, d=2S/c= 396.

Problem 12
Since the side of the rhombus is equal to the distance between the

two horizontal lines, each half of the rhombus consists of an equilat-
eral triangle. Then b = 23R and with the Pythagorean theorem,
R=3r. Hence 2R = 6r=106.5 and 6= 184.4. The Pythagorean theorem
also gives directly a = V3b = 6R = 18r = 319.5 and thus az=1009.6.
Also, d= (a— b)/2=67.5.

Problem 13
The angles of the square and equilateral triangle in figure 4.12 force

triangle ABC to be a 30-60-90 triangle with ZA = 30" and £B=60".
Hence, AB = 2a. Examining the other interior angles shows

AB = 2a =3t +5+5//3. Also we see that BC = a = 25/+/3 +3s.
Eliminating s quickly yields ¢ = (3 -1

Problem 14

Draw the auxiliary lines shown in figure 4.50 to get an equilateral
triangle. Thus r_, is the radius of the inscribed circle. By inspection

Ted ™ + Thtue

problem 12). Therefore r, . =2

Twh ite

and by the Pythagorean theorem r_, = 3r

blue (SCC

Tblue and Tblue = rwhite/Q'
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Figure 4.50. Construct an equilateral triangle.

Figure 4.51. Draw the dashed lines and contem-
plate the length of the tangents.

Problem 15
From figure 4.51 we see that, on the one hand, the length of the

central diagonal is 2r + 24/2r. On the other hand, it is also equal to
2PT+ 2r. However, PT = (1+ V2 ). Equating the two expressions gives

2
V2 +1

{ = r=(2-/2)r = 0.585786r.

Problem 16
We are given that 2r equals one side of the rectangle. Let 2¢ equal

the other side of rectangle. Then, as shown in figure 4.52 draw a line
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Figure 4.52. Draw the auxiliary lines and invoke
Pythagoras.

from the center of one of the circles rto the center of circle p. The
Pythagorean theorem then gives (r+ p)2 = 2+ »> Similarly,
(r+ ¢)?=0E+ (R-r—¢)>

However, R=2r+ p, and so subtracting the first expression from
the second gives (r+ ¢)?= (r + p)2= (r+ p— ¢)%> — r*. After expand-
ing and canceling, one is left with p? + 2rp — 2r¢— pg= 0, or
(p—q)(2r+ p) =0. Thus p = ¢, a relationship that holds
even if ¢>r.

Problem 17
Draw the auxiliary lines shown in figure 4.53. Then, by Pythagoras,
(a+b)*=(a—3b)*+ (t+2b)%, or

Sab— 8b% = (1+ 2b)°. )
From figure 4.53 one can also see that @® = (a— 2b)+ %, or
4ab— 40> = 2 (2)

Solving equation (1) and (2) together gives 2t2 = (¢ + 2b)? ort = 2b/(\§ -1
Reinserting this expression for ¢into equation (2) gives

2
2
4ab—4b? = b?
[&—1]
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Figure 4.53. Each block has side 25 and tis the
2b distance between the point of contact of circle a
and the nearest block.

t
and
a=—"— o
(2 -1y
Rationalizing the denominator yields the final result
a=2(2+~2)b.
Problem 18

Draw an auxiliary line connecting O and O’ on figure 4.17 and drop
a perpendicular from O’ to one of the tangents. This forms a 30-60-90
triangle, and we see that the angle between the two tangents is 60°.
Similar triangles immediately gives ¢= 3b, as well as b= 3a. By inspec-
tion 2R = 3¢, and hence

R = §c = ﬁa.
2
Problem 19
The solution is left to the reader. i
Problem 20 i :
Because AC=30 m and BC=40 m in figure 4.19, we recognize AABC | .

as a 3-4-5 triangle. Letting BE = {, CH = x, and JC=y, one easily sees by
applying similar triangles to figure 4.19 that DE= (34)t, x=38 — ¢,
AI=28 -y, and FG= (34)t+ (34) x2 - (y+2).

Since the areas of triangle BDE, the rectangle, and the trapezoid
must all be equal, we have

s=tixdicg=Xreran =23 _9y435)
2 "4 9 92\ 4 2
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giving two equations

16y= 3¢+ 110
and
§t2 —(38-1) 3t+110 ‘
8 16

The second is a quadratic for . Solving it yields ¢=21.7743. This in
turn implies DE = 16.331, CH = 16.2257, JC=10.9576, AI=17.0424, and
FG=4.873125, as stated.

Problem 21
In figure 4.20 each area S= mr?/5 = d2, so that d = \/n/5r = 39.749.

Further, draw one line from the center of the circle perpendicular

. to one of the segments {and another from the center of the circle to

the point at which zintersects the circle. The Pythagorean theorem
- then gives * = (d/2)? + (t— d/2)%. Solving this quadratic for ¢yields

2
t= .72 & +£ = 65.7548,
4 2
which is slightly different from the result found on the tablet. We have

not been able to discover the reason for the traditional geometer’s
mistake.

Problem 22
The side of the square in figure 4.21 has length 4r. Use the Pythago-

! rean theorem once on the circles inside the square to show that r= (3/2)1.

Use the Pythagorean theorem again to show that the small upper
OQO triangle is a 3-4-5 triangle with height 37 The upper triangle and the
F ’ lower triangle containing the circle Rare similar, so 4r=3R. Thus

R= (4r/3) =21.

Problem 23
Draw in the altitude of the largest triangle in figure 4.22. Considering

/ \ the equilateral triangle that sits on top of square ¢and contains squares
TN aand b, one easily gets by similar triangles that «/g =a/[(b—a)/2], or
b=(2/4/8 +1)a. In the same way, ¢ = (2/4/8 +1)b and k = (2/+/3 + 1.




Casier Temple Geometry Problems

The fact that the inner triangle is equilateral tells us that g = 94/3r
and the Pythagorean theorem used on this triangle gives in turn r= ¢/4.

With the provided value of a=7.8179, we then have b=16.8452 . . .,
¢=36.2964...,k=78.20...,d=314336...,and r=9.074. . ..

Problem 24
All sides of a rhombus are equal, so figure 4.23 shows that

b* = a® + . Furthermore, considering the length of the tangent from,
say, the top left corner of the rectangle to the circle rshows that

b= (a—7r) + (t—71) = a+ t—2r. Eliminating b gives t= (2ar— 21?)/
(a—2r). We are given that the width of the rectangle is a + 4. By the
Pythagorean theorem, we then get 4R? = t* + (a + b)?. Because the
diagonals of a rhombus intersect each other at 90°, the Pythagorean
theorem also gives d? = 4(* — R?).

We are told a= 45 and 2r = 30. Inserting these values into the
previous expressions yields ¢= 60, b= 75, 2R=134.1640 . . .,
d=67.082, and 2Rn = 423.9584. Figure 4.23 also shows that
e=(R-1)/2=3708.

Problem 25
In figure 4.24 the lightest circles have radius r= R/2. Form a right

triangle by drawing a line from point A to the center of the nearest
circle ¢, and from the center of r to the center of ¢. Then, by the Pythag-
orean theorem, (R—)2= (t+ 12+ 12, or

R2
R2 - 2Rt +1¢2 =t2+Rt+?,

and t= R/6.
To find ¢, draw a line from point A to the center of the nearest circle ¢

and from the center of the large circle R to the center of ¢. Then the law
of cosines gives (¢ + R)?= (R— ¢')? + R? — 2R/, which also yields ¢ = R/6.

Problem 26
Draw the auxiliary lines shown in figure 4.54. Applying the Pythago-

rean theorem on the left gives

d 2
R =| 5+ (R=-20%

129
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d/2

Figure 4.54. Draw the asymmetric auxiliary lines shown. ‘ R

which implies
2
rR=L 11
16¢
Applying the Pythagorean theorem on the right shows that
(R—n?=r"+ (R—-2t—1)?, yielding
2
R=r+i+—.
4t

Equating the two expressions for R and solving the resulting qua-

dratic for r gives
2
r= ‘/4t2 + 4 -2t
4

If d=3.62438 and 2¢= 0.34, then r=1.5038 or 2r= 3.0076, which
is a slightly different result from the one on the tablet. Once again, we
cannot determine exactly why the wrong answer is written on the
sangaku.

Figure 4.55. Draw the auxiliary lines shown.
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Problem 27
We present the original solution:

Referring to figure 4.55, we have by the law of cosines
P+d®— =20t and 0>+ &> — a®>=—(201).

Together they imply 62 + d*> — ¢* + b + d*> — a*>= 0, or

= a2+62_b2'
2

This result was written on the tablet.

Problem 28
Draw in the auxiliary dashed lines as in figure 4.56. We must have

6=45° and Cosine 0 = 1/\/5, Then, by the law of cosines,

(a8 :(“%ji[mg)ig[ﬁ%](ﬁg)%

Multiplying everything out gives the quadratic equation k? + 9\/2ak —
42 ++/2)ab = 0, which has the solution k = y/4(v2a + 2a)b + 2a% — /2a.

N
—e

AN
QD

x
N
[ R N

N\
|
|
|
T

o !

Figure 4.56. Find k in terms of @ and b. Notice that the
dashed lines do not form a right triangle, but 6 = 45°.

Problem 29
Draw the triangle ACE as shown in figure 4.57. It must be a right

triangle. (Why?) The two marked angles are also equal. (Why?)
Therefore the two right triangles ACEand CBH are similar, and so
21r/BC= CA/CHor r=BC- CA/2CH.
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Figure 4.57. Draw in the right triangle ACE. The two
indicated non-right angles are equal and therefore
ACE is similar to CBH.

Problem 30
o Since triangle ACEin figure 4.29 is equilateral, AO = 21, where ris
the radius of the inner circle. But because ABCDE is a regular hexa-

gon, we also easily find AO = %/\3 + 1+, giving

E t= (23 - 3)r.
If r=10, then t=4.641.
As it turns out, the results on the tablet, r= 10, t=4.266, are wrong,

which yet again shows that even traditional Japanese geometers made
mistakes.

Problem 31
The tablet gives the result

R:(%Hjt, rz(%—ljt, %:w/4+«/§,

which can be easily derived as follows:

From figure 4.30, the angle between the centers of any two of the
small circles is 360°/8, and the angle between the center of a circle and
the point at which it touches its neighbor is 180°/8. Drawing a line
from the center of the large circle to the point where two small circles
touch shows that

o t t
sin(180 /8) = —— = .
( /8) R—t r+t
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Let k =sin(180°/8) = sin(45°/2) = /2 — «/5/2 =1/44+ 2«/5. Solving

the above equation for Rand rgives the result on the tablet.

Problem 32
This problem is similar to the previous one. From figure 4.31, the

angle between the centers of the outer circles is 72°, and so the angle
between the center of a circle and the point at which it touches its
neighbor is 36°. Drawing a line from the center of circle r to this point
shows that

or r=— L
R+r sin36” —1

Now, sin36° =10 — o5 /4. Rationalizing the numerator gives
1/sin 36° = 410 + 2\/3/5 =.2+ 1/4/5, which implies
r=(y2++0.8 _ DR.

The most difficult part of the problem is finding the expression for

sin36° =

sin 36°. Although one can look this up in standard tables of trigonometric
formulas, exact values for such “odd” angles no longer seem to be derived
in high school geometry texts. One way of doing it relies on the following
trick: Use the double-angle formulas for sine and cosine to write
sin72° = 2 sin 36°cos 36°
=2[2sin 18°cos 18°][cos?18° — sin? 18°],
cos 18°= 4[sin 18°cos 18°][1 — 2sin? 18°],

where we have noticed that sin 72° = cos 18°, which conveniently cancels
from both sides of the equation. Letting sin 18° = x gives a cubic equa-
tion for x: 8x* — 4x+ 1 = 0. This equation easily factors, yielding three
solutions. Convince yourself that the only possible one is
sin18° = (5 —1)/4.

Now use the half-angle formula sin?18 = %(1 —co0s36°) =
%(1 —~1-5in236"). Solving this equation for sin 36° gives the above
result.

Problem 33
From figure 4.58, r= R cos72° = Rsin 18°, and

R =t+(1/sin54") (t+1). In the previous problem, we showed that
sin18° = (\/g —1)/4, from which it quickly follows that
sinb4” = («/g +1)/4. Eliminating R gives ¢ = 2r//5 = /0.8r.

133
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Figure 4.58. Ris the radius of the large circle. The angle
AOH =T72°.

Problem 34
This problem is similar to the previous three and can be solved by

drawing similar auxiliary lines on figure 4.33, one from the center of
the large circle to the tip of one of the triangles, and a second from the
center of the large circle through the center of one of the small circles

of radius . If ais the side of a small triangle and Ris the radius of the
large circle, then R = V3a. With the auxiliary lines it is also easily
shown that R =7+ (2/\/5)1" + a. Eliminating R gives

3-4/3
2+«@

a=(9-5V8)a,

Y =
as stated.

Problem 35

In a manner similar to the solutions of previous problems, draw one
line from the center of figure 4.34 to the tip of one of the triangles,
and draw an adjacent line from the center of the figure, through the
corner of the square, and to the large circle. This gives a drawing like
figure 4.59. Then we have both

R=—a+— (1)

and
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Figure 4.59. Notice that the indicated angle is 15° and that
cos15° = r/x.

Notice from figure 4.59 that r= xcos 15°, so

R=§a+[l+ ! jr. (2)

cos15°

The value of cos15° can be easily derived from the double-angle
formula cos30° = 2cos? 15° — 1, which givescos2 15° = (Jg +2)/4.
This is turn can be recognized as the perfect square of cos15°=

(V6 ++/2)/4.

Inserting this value into Eq. (2) and eliminating a by Eq. (1) gives
the result

L AB-y2+1
V3 +2V2 +1
If R= 10, then r=2.37 which is slightly different from the answer
written on the tablet r=2.32.

R.

Problem 36
Since the triangle is equilateral, figure 4.35 shows that
tan30° = 2r/a = 1/+/3. Drawing a line from, say, the center of the right : \

circle ¢ to the lower right-hand corner shows also that tan 15°=¢/(a —¢).
A good half-angle formula for tangent in this case is tan (6/2)=
(1—-cos 6) /sin 6, givingtan15° =2 — /3. Eliminating a from the two
expressions yields

t=(3 -1
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Problem 37
Draw the auxiliary lines shown in figure 4.60. Let AB= a, BC= b,

BD= ¢, and ZBDC= 6. Since [ = «/5 (b/2), we have with the trig identity
sin(a— f8) = sin o cos f— cos arsin S,

V2 V2

OH = ? bsin(45° —0) = ? b[sin(45°) cos(8) — cos(45°) sin(0) ]

b
=—(a/c—=b/c).
5 ¢ )
The radius of the circle OPis just /2, so by the Pythagorean theorem
PQ = 2,[b2/4 —(OH)? = \[b2 —b*(a/c —b/c)? = (b/c)2ab.

Apart from the general case, an example was written on the tablet: If
a=185, and b= 80, then PQ =68 + 625/179.

B a A
Q
b (@]
Figure 4.60. Draw in radius OP and H .':f:;'
0 =+2(b/2) DS
c 9=

Problem 38
On the tablet, the result s= 0.897459621556135 was written. The

proposer, a Mr. Kitani, wrote, “This value is correct to fifteen digits.”
Since Kitani did not write a solution, we give one here:

Draw figure 4.61. The angle o is one-half the inscribed angle be-
tween nearest nonadjacent pins and thus o= (1/2) x (1/2) x 60° = 15°.
The angle fis one-half the central angle between two adjacent pins and
thus B=15". We also have tan = s/(2a) and tan ot = a/(l/24), since half
the length of the string between two pins is //24. Eliminating a gives

ltan%15°
§=—
12
Plugging in /=150 on a PC gives s = 0.897459621556135323627,

which shows that Kitani’s boast was correct—and he did it by hand
with a soroban!
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Figure 4.61. Notice that a= = 15"

Problem 39
Aida Yasuaki’s solution begins by noting that in figure 4.62, AABCis

similar to ABCF. Thus, a/(a+t) = t/a, or * + at— a* = 0. Solving for ¢ gives

NG

=

a.

2

But a+ t= AC= BD, and so BD = (£+1)a/2.
Then, by Pythagoras,

2
BH = |(BD)? _% = —“F’J“:‘Ba.

2
R? = (BH - R)? +(§j ,

We also have

which with the previous expression yields

3++5 _ 5+4/5

R = a= a.
915+ 245 10

In this case, a modern solution is faster: From the diagram

a/2R =sin (1/5) = sin 36°= (\/ 10245 )/4, from which it follows

that a= 5.877. However, this solution assumes that, if you are stranded




138 le\ap'ler 4

Figure 4.62. Notice that angle DBH is 18°.

D H a2 E

on a desert island without a calculator, you know the expression for
sin 36°. We derived this formula in the solution to problem 32.

Problem 40
Using the summation formula from chapter 2, problem 4-7, we have

18

k— Zk
k=

1

m

k=

19 k=1
n

k=) k- ik,

=6 k=1 k=1

NgE

N

I
=
=

=~

or
1, . 1,
N=§(m2+m—18-19)=§(n2+n—5-6).

Rearranging the terms and factoring gives (m—n)(m+n+1) =8 - 39.
Setting m—n=8 and m+ n+ 1 =39 yields m= 23, n= 15, and N=105.
(Notice that 8 - 39 can also be factored into, for example, 6 - 52 or
o 24 - 13, but these do not give a solution in positive integers. The

factorization 1 - 312 gives another solution, m—n=1and m+ n+

" " 1 =312, which yields m= 156, n = 155, and N=12,075. This solution is
not written on the tablet. Convince yourself that 8 - 39 and 1 - 312 are
the only correct possibilities.)

Problem 41
After one trial, the remaining volume of watered wine is

V=2[V,—125]. After two trials the remaining volume is
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V=2[2[V,—-125] — 125] = 22V, — (2 + 2?) x 125. After the tenth trial, we
have V=2V — (2+22+ 2%+ ... +21%) x 125 =0. The summation of
powers of two in the parentheses is a geometric series = 2(1 — 21%) (see
chapter 2, problem 4-8). Thus

V, = 2%0 x 2(210 —1) x 125 = 249.7558594.

Also, the volume of the pyramid is V, = (1/3) («/5/4)a3, which gives
a®=1,730.359552, or a=12.00549 cm.

Problem 42
Here is a traditional solution from the manuscript Solutions to

Problems of Zoku Shinpeki Sanpo by Kitagawa Moko (1763-1833). In this
case the traditional solution is pretty much what any calculus student
would do (but see chapter 9).

In figure 4.41 let ED= x, DFF=y, BC = a, and AC= b. By similar triangles
a/b=y/(b— x). Thus if Sis the area of the rectangle, S= xy= (abx — ax?)/b.
Setting the derivative dS/dx= 0 gives x= /2 and y= a/2.

Problem 43
Referring to figure 4.42, similar triangles gives x/c={/(c— x), or
t=x(c—x)/c. For 0 < x< ¢, the shaded region S has area

x(c—x)? 2 —2cx® + x5

% 2¢ ’

Taking the derivative of S(x) gives §'(x) = (¢* — 4ex+ 3x%)/2c=
(83x— ¢)(x— ¢)/2¢, which maximizes S when the numerator vanishes.
Hence, S=S§

max

S(x) = %t(c —x) =

when x=¢/3.

Problem 44
The area of a rhombus is one-half the product of its diagonals, in

this case, S, = 2tva? — (2. The side of the square x = \/gt, and so the
desired areais S, — S, = S(t) = 2tva® — 2 — 22
Taking the derivative yields
S'(1) 5 12
=va? -2 - —— - 2.
2 ,,/a? _ t2
Setting this to zero gives ¢2 — 22 = 2¢+/a? — t2, which upon squaring
results in a quadratic equation for ¢ in terms of a?. After a little
algebra, the solution is 2 =[(4 — «/g)/S]a?, or in terms of x,

139
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1

1,
V2

x= |1-

which was written on the tablet.

Problem 45

We have not found a traditional solution, so here is a modern
one:

Consider figure 4.63. We are to maximize P71 given that point £ can
be moved. Shifting Eis equivalent to changing the angle 8; we there-
fore take 0 as the variable and write the slope of BT in terms of it.
Focusing on the dashed lines, it is not difficult to show that the slope
mof BT'is

asinf+acosb@—a TP-a
a+asinf - AP
But AP= a+ acos 6+ asin 6 and with the help of a double-angle for-
mula we can show that therefore
_ asin26
~ 1+sin6
The derivative of TP with respect to 0is

m =

_ 2acos(20) (1+ sin ) — asin (20) cos 6
- (1+ sin 6)2 '

TP’

Since we want TP’ = 0, we require the numerator to vanish. With the
help of a few double-angle formulas we get (see problem 32 this

chapter) sinf = (\/g —1)/2 and cos@ = (\/2\/3 -2)/2.

AT
G
1
€]
12N _ C B
H
F
Figure 4.63. Consider 0 variable. The dashed
lines give the slope of BT. (€] a
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Plugging back into the expression for 7P gives

TP, = (V5 =124 —2 +1|a.
«/3+1

After rationalizing the denominator and a little more algebra this

expression reduces to

TP, = [\/10\6 ~99 + 1}; =1.6,

which is the value written on the tablet.

Problem 46
Referring to figure 4.64, let ON = x. Then we wish to maximize

AB — MN =2+r% — x% — (r — x). Taking the derivative with respect to
x and setting it to zero gives x = r /5, or MN = 1- l/\/g)r.
If Pis the midpoint of MN and we let NP=y, then from the figure
we also have
P+ (y+ )7 = (r= 1),
I? =7r? —x2,

But x=r— 2y and so the above expressions become

M

12 =2ry+ 92 = =2nt + (2.

L* =4y(r—y). @)

Figure 4.64. Note that the angled chords intersect at
P, the midpoint of MN.
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Similar triangles shows that /2 = ¢**/y*, where ¢? = y* + L? from the
Pythagorean theorem. Plugging all this into Eq. (I) with L given by Eq.
(2) leads to

y2 — 4y + 4rt* — 2ry* + 20ty = 0.
This equation can in turn be factored into

(y=20)[y(y+20) = 2r(y+ )] = 0.
The only positive solution is y = 2¢, a result that is independent of r.
Thus, at the desired maximum, MN =2y =4t =(1- 1/@)7, or

_«/g—l r

= r = .
45 5+

t

Problem 47
We give two solutions to this problem. The first is a solution follow-

ing the original method with somewhat expanded explanation:
Referring to figure 4.65, we see that, by similar triangles, x/a= y/b.
But b= a— y— ¢. Furthermore, by the Pythagorean theorem,

¢ = 2xy — 2, which gives
. (x+a)
N 2xy — »? =a-——

Squaring both sides yields a quadratic equation for y in terms of x and
a, which after some algebra yields two solutions, the relevant one being
the smaller one:

B a’x
Y 2x2 + 2ax + a2’
A
4
/7
7
7/
/7
/7
7 X xX-y
/7
7
7
7
y

Figure 4.65. The dashed lines make it clear that B C
A+ (x—y)2= a2 b y c
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The derivative of y with respect to xis

,  —a’(2x? —a?)
(2x2 + 2ax + a2)?’

which vanishes when x = ¢/+/2, giving a maximum for y of

Yo = L2 =1)/ 2]

The following is a modern solution to the same problem by J. F. Rigby,
Cardiff University Wales:

Figure 4.66. Extend the circular arc to point
y E. This shows that angle CDE=45° and that
angle BDC=135°.

Figure 4.67. All the angles BDC intercept the
same arc and so are equal, but the height y of
the triangle is maximized when point H falls
on the midpoint of a. One can show this
analytically by, for example, using the law of
cosines to write an expression for yin terms
of aand the distance of H along the x-axis;
call it 5. Setting dy/ds= 0 shows that y reaches
a maximum when s= a/2.

Extend the circular arc in the original figure 4.46 to point E, creat-
ing a large square with side AE= x, as in figure 4.66. Also draw the line
BD and extend it to point £. (Convince yourself that the extension of
BD intersects the square at E.) Notice that the inscribed angle CDE
(not drawn) subtends the arc CE, which is 90°, and so ZCDE = 45°.
Consequently, ZBDC = 135". Figure 4.67 then shows that y attains its
maximum when H is the midpoint of the side BC. From figure 4.66, we
then have x/(a+ x) =tan(45/2) = \/5 —1, from which it follows that
x = a/«/§ and y,.. = («/5 —1)a/2, as above.



Plate 5.1. Saitd Kuninori, a disciple of the famous mathematician Ono Eijyu
(1763-1831), hung this tablet in 1828 at the Kitamuki Kannon temple of Ueda
city, Nagano prefecture. The sangaku is 115 cm wide and 85 cm high and on it is
the inscription that we have used as an epigraph for chapter 4. The problem
depicted is given in this chapter as problem 23. Also shown (b) is the solution as
it appeared in the 1844 book Sanpo Kyiseki Tsu-ko of Uchida Kyumei.



TFive

Havrder Temp'e Geometry

problems

Mathematics is profound. people have
their methods fov* so[ving problems.
This is true in the West as well as in
China and Japan. Those who do not
s’rmcly hard cannot solve any problems.
T have not mastered mathematics yet,
even though J have been studying fv*ow\
youth. And so J have not become a
teacher for anyone, but some people
have asked me to teach mathematics
to them. J showed them the solutions to
the problems and will ]/\ahg a sangaku\
at the Katayamahiko shrine nearby, on
which sixteen problems are written, J
dedicate this tablet to the shrine in the
hope that my students may get more
sclz\olarslx\ip in mathematics.

—preface to the samga/a/t l/\vmg in

the Katayamahiko shrine in 1873 by

Jrie Sl/\imjyvm, aged seven’ry—eiglx\f

J n this chapter we present two dozen more problems from the same
sources as those in chapter 4: tablets, books, and manuscripts. Again we
begin with a diophantine problem and then progress from the easier geo-
metric puzzles to the frustrating. These problems are generally at a higher
level than the previous ones, the main distinction being that the required
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algebra is often more involved and that they sometimes require an uncom-
fortable degree of “lateral thinking.” Many of them, nevertheless, can be
solved by little more than the Pythagorean theorem. Problems 22-25 do
require serious calculus and will challenge even college students, but they
also give a good illustration of the integration techniques employed in tra-
ditional Japanese mathematics, which are often easier than those we are
taught in school, forcing one to wonder how much of our mathematical
education is mere convention.

Problem 1
Here is the rightmost problem on the sangaku of the Abe no Monjuin temple, color

plate 11. This diophantine problem was proposed by Tomitsuka Yuko.

A number of visitors, N, visit the shrine. We know only that

(1) %Nis an integer and the last two digits are 68;
(2) 2 Nis integer and last two digits are 60.

Find the least possible value for N.
Answer: %N =1,568; TN =1,260; and N = 2,016.

The solution is on page 162.

Problem 2
Proposed by Hosaka Nobuyoshi in 1800, this problem is the third one from the right

on the sangaku of the Mizuho shrine, color plate 9.

A trapezoid has lower side b, upper side @, and height % (see figure 5.1). Divide the
area of the trapezoid into n small trapezoids with equal areas, as shown. Call the lower
side of the smallest trapezoid k. Find » in terms of a, b, and k.

Example:1f a=1, b="7, and k=3, then n=06.

Turn to page 163 for a solution.
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Ihl A

Figure 5.1. Find the number of small
Y  trapezoids of equal area.

Problem 3
This problem can be seen on the bottom right of the sangaku in the Katayamahiko

shrine, color plate 5.

The rhombus ABCD inscribes two circles of radius rand two smaller circles of radius ¢
(figure 5.2). We are given AC=2a=85 and BD=2b=42. Find rand ¢.

Answer on tablet: 2r=21.559 and 2¢=19.854, which is wrong.

A solution—and the surprise explanation of the wrong answer—can be found on page 164.

O
C(>A
/\

‘Qy

Figure 5.2. Find rand ¢
D

Problem 4
This problem is the fifth one from the bottom left corner on the Katayamahiko shrine

sangaku, color plate 5.

As shown in figure 5.3, a rhombus of side %k and a small circle of radius rare inscribed
in a right triangle with sides «, b, and ¢. Find 2rin terms of a, band c.
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Figure 5.3. Find 2rin terms of @, b, and c.

Answer:

272(20+b_1)C:(Lb—6)6'
a+t+c a+c

A solution can be found on page 165.

Problem 5
In 1819, Ishiguro Nobuyoshi (1760-1836) published a book, Sangaku Kochi, where in this

case sangaku connotes “study of math,” not tablet, and so the title may be rendered as Study
of Mathematics. In the third of three volumes, Ishiguro records forty-one tablets hung from
1783 to 1814. The author was a disciple of the Nakata school and all the tablets were hung
by disciples of Nakata Kokan (1739-1802). The problem presented here was originally
proposed by Batsui Mitsunao, a fifteen-year-old boy, and written on a tablet hung in 1812 at
the Nishihirokami Hachiman shrine in Izumi city, Toyama prefecture. Like all the tablets
recorded in Ishiguro’s book, this one has been lost.

As shown in figure 5.4, a number of circles of radius ¢ form a pyramid with sides consisting
of n circles. (The figure illustrates n=4.) A large circle of radius r circumscribes this pyramid.
If Sis the area of the large circle minus the area of small circles, find ¢in terms of Sand n.

Figure 5.4. Find the radius of the small circle in terms
of the number of circles and the area of the large circle
minus the area of the small circles.
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Answer:

[ = 6S
mn—1)[5n — (14— 83)]
A solution by traditional methods is given on page 165.

Problem 6
This problem was proposed by Ikeda Sadakazu in 1826 and hung in a shrine in Azabu

town, Tokyo. The tablet on which it appears is among the 25 hung between 1808 and
1826 that were recorded in the 1827 book, Shamei Sanpu, or Sacred Mathematics, by Shirai-
shi Nagatada (1795-1862). These sangaku problems are generally of a high level of
difficulty, containing complicated integrations that, for example, ask for the area of a
general elliptic solid.! Another problem (problem 18, chapter 6), asking for the area of a
spherical triangle, is identical to the one treated by Leonard Euler, although the methods
are different. Here is one of the easier problems:

Three squares of sides a, ¢, and d touch the line /, and they each have one vertex in
common with a square of the side b, as shown in figure 5.5. Show that b= 2d.

The solution is on page 166.

Figure 5.5. Show b= 2d.

'A general elliptic solid here refers to one described by the equation x?/a® + /b +
22/c¢*>=1,with a> b> c.
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Plate 5.2. Original illustration for
problem 6, from Shiraishi
Nagatada’s 1827 Shamei Sanpu.
(Aichi University of Education
Library.)

Problem 7
Kawano Michimuku, a student of the Fujita school, proposed this problem, which was

written on a tablet hung in 1804 at the Udo shrine in Miyazaki prefecture. We know of it
from Fujita Kagen’s 1807 version of the Zoku Shinpeki Sanpo.

As shown in figure 5.6, ten circles of radius r touch each other externally and touch
the large circle internally. If Sis the area of the big circle minus the area of the ten little

2r = 45
Vw8 -1)

circles, find rin terms of S.

Answer:
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Figure 5.6. Find the radius of the small circles, 7 in terms of S,
the area of the large circle minus the area of the ten small
circles.

Example: It §=234.09, then 2r=8. . ..

A traditional solution can be found on page 16 7

Problem 8
This problem was proposed by Suzuki Satar6 and is found on a tablet containing

twenty-four problems hung in 1891 at the Shinohasawa shrine of Fukushima city. The
tablet measures 273 cm by 98 cm.

Let A and B be any two points on one chord of a given circle. Draw four inscribed circles

with radii a, b, ¢, and d, which touch the chord at A and B. (See figure 5.7.) Draw the
tangent to two of the inscribed circles, which touches them at points Cand D. At this

Figure 5.7. Show that a/b= ¢/d=¢/f.
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second chord, draw two more inscribed circles of radii ¢ and f, which touch the tangent at
Cand D and the original circle internally. Show that a/b= ¢/d= ¢/f.

Turn to page 168 for a traditional solution.

Problem 9
Nakazawa Yasumitsu proposed this problem, which is the the fourth from the right on

the sangaku of the Mizuho shrine, color plate 9.
Given the right triangle ABC (see figure 5.8), draw the lines AD and BE, from the two
vertices A and B, such that two circles of radius r can be inscribed in the resulting con-

figuration, as shown. Find the radius rin terms of three sides @, b and c.

The original solution can be found on page 169.

Figure 5.8. Find rin terms of sides «, b, and c.

C E A

Problem 10
This problem can be seen as the third from the top left corner of the Katayamahiko

shrine sangaku, color plate 5. Advice: Do the previous problem first.

In an equilateral triangle ABC of side 2a, two lines CE and BD touch two inscribed
circles of radius r (figure 5.9). Find rin terms of a.

Answer: y = (\/5 - @ )a.

A traditional solution is given on page 170.
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c Figure 5.9. Find rin terms of a.

Problem 11
Proposed by Abe Hidenaka, this is the ninth problem from the right on the Dewasan-

zan tablet, color plate 10.

Five circles, two of radius a, one of radius » and two of radius ¢, touch each other
and a trapezoid ABCD, as shown in figure 5.10. The trapezoid is isosceles, so that
AD= BC. Find b in terms of ¢ and c.

Example: If a= 36 and ¢= 16, then b= 49.

The answer and a solution can be found on page 171.

Figure 5.10. Find bin terms of aand c.
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Problem 12
Here is another problem from the Shimizu shrine tablet, 1828, proposed by Kobayashi

Nobutomo.

Given a right triangle ABC, draw a line from vertex C'to the hypotenuse, which is per-
pendicular to the hypotenuse at point H (see figure 5.11). A circle of radius r is inscribed
in the triangle. Two more circles of radi r; and 7, are inscribed between the triangle, the
line CH, and the circle r. Find r, in terms of r and b= AC, and 7, in terms of rand a= BC.

Answer:

2

) )

A full solution can be found on page 172.

A
H
c
b
r .

Figure 5.11. Find r, in terms of rand b. Find D L
7 in terms of rand a. B . c

a &1

Problem 13

This problem, proposed by Aotsuka Naomasa, can be seen as the seventh from the
right on the sangaku of the Dewasanzan shrine, color plate 10.

Two large intersecting circles of radius R are inscribed in a square in the manner
shown in figure 5.12. Six smaller circles of equal radius rare inscribed in the larger
circles as shown. Two circles of radius ¢ touch the square as well as the large circles.
Find rin terms of ¢.

Answer:
0.4¢

_M+3—\/4(M+2)'

r
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Figure 5.12. Find r in terms of &

Example: If t=1, then r=1.03228896.

The solution can be found on page 173.

Problem 14
Motoyama Nobutomo proposed this problem, the sixth from the right on the Mizuho
tablet, color plate 9.

Five squares with sides ¢, ¢, 4, t'l, and t'2 are inscribed in a right triangle ABC, as shown
in figure 5.13. Find a= BCin terms of ¢, and £,

The answer and a solution can be found on page 174.

t2 Figure 5.13. Find a= BCin
terms of 4, and 7.

C A




156 Chapter 5

Problem 15
Saishi Shinzan is an unpublished manuscript edited by Nakamura Tokikazu, which

contains a record of 208 sangaku dating from 1731 to 1828. One of the problems
contained in Saishi Shinzan is this one, proposed in 1821 by Adachi Mitsuaki, and
dedicated to the Asakusa Kanzeondo temple, Tokyo. Advice: Do the previous problem

first.

Consider an infinite number of connected squares with sides [ (n=1,2,3,...) in a
right triangle (see figure 5.14). Let L be the total length of the sides, L = >>_,/,, and §
be the area of the triangle minus the total area of the squares. Find /; in terms of L
and S.

n’

The solution is on page 175.

Figure 5.14. Find [, in terms of
L=3%[ and S.

Problem 16
This problem can be seen as the fifth from the right top corner of the Katayamahiko

shrine sangaku, color plate 5.

A chain of circles of radii r,, Ty Vg and 7, is inscribed in the right triangle ABC, as
1 by
and 7,, each of which touches two of the larger circles and is tangent to BC. Show that

— 2
tlt?) - t2

shown in figure 5.15. Between the circles of radius r are three smaller circles, ¢

See page 176 for a solution.
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Figure 5.15. Find the relationship
C  between the radii «.

Problem 17
Proposed by Miyazawa Bunzaemon in 1828, this problem comes from the sangaku of

the Shimizu shrine.

A chain of five circles of radii r (n=1, 2, 3, 4, 5) is inscribed in the right triangle ABC,
as shown in figure 5.16. Find aand b in terms of », and r,. Advice: Do problem 14 first.

Answer:

a= 2 NIy +7 and b=—271(a_rl), where T = 4/nrd.

T - a—2n

Example: 1f 2r; = 50 and 2r, = 20.048, then a=248.6 and b=56.29.

A full solution is given on page 177.

c Figure 5.16. Find aand bin terms of r, and 7.

Problem 18
This problem was hung in 1850 at the Ushikawa Inari shrine of Toyohashi city, Aichi

prefecture. It was originally proposed by Imaizumi Seishichi and recorded in the unpub-
lished manuscript Record of the Ushikawa Inari Shrine Sangaku.
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Two right triangles ABC and A’B’C’, such that A, C’, C, and A’ lie on the same line,
inscribe the same circle of radius n As shown in figure 5.17, draw four inscribed circles of
radii 7, ry, 75, and r,, and then show that rr, = To¥,.

The solution is left as an exercise for the reader.

Figure 5.17. Show that r,r, = 7,7,.

Problem 19
Honma Masayoshi proposed this problem, the leftmost on the Dewasanzan sangaku,

color plate 10.

Two identical ellipses of major axis 2a¢ and minor axis 2 touch a circle of radius R
internally, as shown in figure 5.18. Find b in terms of @ and R.

The full solution is on page 178.

Answer: b = \/1—(a/R)2a.

Figure 5.18. Find b in terms of @ and R, the radius of the circle.

T~

Va
b b

<~
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Problem 20
Proposed by Sugano Teizou, this problem can be seen as the tenth one from the right
on the Abe no Monjuin tablet, color plate 11.

A chain of four circles of radii r, r,, 75, and r, are touched on one side by the line /and
on the other side by a circular arc of radius 7 which in sumo wrestling is called the
“Gunpai” or “umpire’s fan” (see figure 5.19.) Find r, in terms of r,, r,, and 7,.

Answer:

)
1Ty

LR/ Dy -

A solution can be found on page 179.

7

Figure 5.19. Find 7, in terms of r}, Ty, and T,

Caution: Serious calculus required for the remaining problems.

Problem 21

This college-level problem comes to us through Kobayashi Tadayoshi (1796-1871), a
student of the Takeuchi school, who in 1836 published a collection of sangaku problems
called Sanpo Koren, or Mathematical Gems. The collection records only five tablets, dating from
1824 to 1834, but the problems are all extremely difficult, asking for the area of ellipsoids and
so forth. To calculate such quantities was the purpose of the Enri, discussed in chapter 9.

The problem itself was originally proposed by Kobayashi himself on a tablet hung in
1824 at Konpira shrine in Komoro city, Nagano prefecture. Like all the other tablets
contained in the Sanpo Koren, this one has been lost.

As shown in figure 5.20 three identical ellipses of major axis 2a are inscribed in a large
circle of radius . Find @ in terms of rwhen the area S of the ellipse is a maximum.
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Figure 5.20. Find the semimajor axis of an ellipse in terms of the
radius of the circle when the area of each ellipse is maximized.

Answer: a=r/ «/5 .

Example: If r= 99, then a=70.0035. (Kobayashi had recognized V2 =99/70.0035 =
1.414215004.)

Turn to page 181 for a full solution.

Problem 22
This problem, proposed by Kuno Hirotomo, can be seen as the third from the right on the
second Atsuta tablet, color plate 12. Hung in 1844 by Takeuchi Shukei (1815-1873), the
tablet was lost. More recently, the shrine constructed a replica based on the anonymous
and undated note, “Sandai Gakumen Sya,” or “Record of Sangaku.”

Two parallel planes, separated by a distance d, cut a sphere of radius r (see figure
5.21). Find the surface area S of the cut-out section in terms of d and ».

Answer: S= 2mrd.

A solution can be found on page 152.

Figure 5.21. Find the surface area
of the slice (black) in terms of d
and the radius of the sphere.
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Problem 23
This is the sole problem on a tablet that was hung in 1828 by Sait6 Kuninori at the

Kitamuki Kannon temple of Ueda city, Nagano prefecture. We have used Saitou’s inscrip-
tion as the epigraph for the previous chapter. The problem was originally recorded by Iwai
Shigeto (1804-1878), in his book Sanpio Zasso, or Collection of Sangaku, published in 1830. In
his book, Iwai records twenty-three tablets dating from 1811 to 1828. Of these tablets, two,
the Kitamuki sangaku and that of the Bando temple in Saitama prefecture, have survived.

The tablets of Nagano prefecture, including this one, have been presented in Sangaku
e no Shotai, or Invitation to Sangaku, by Nakamura Nobuya who has extensively studied the
tablets.?

We are given a right circular cylinder with base of radius rand height 2. We cut the
cylinder by three planes. The first is plane BCDE, which as shown in figure 5.22, is
perpendicular to the base. We then cut the cylinder with two more planes, one contain-
ing points Band D and the other containing points Cand E. The intersections of these
planes with the cylinder are curves on the cylinder’s lateral surface. Find the surface area
A of the shaded area between the curves in terms of 7, 4, and d.

Figure 5.22. Find the shaded area in terms of 7, d, and the height of the
cylinder A.

Answer: A =2rh/\/(2r/d)—1.

Example: 1t d=1, 2r=10, and 2= 9, then A = 30.
A full solution is given on page 183.

2Kyouiku Syokan, 2004, out of print.
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Problem 24
Sugimoto Kozen proposed this problem in 1826; it was hung in a shrine of Yotsuya,

Tokyo, and recorded the following year in Shame: Sanpu by Shiraishi Nagatada.

Two identical and parallel right circular cylinders of radius r pass through a sphere
such that the line of contact between the cylinders passes through the center of the
sphere (see figure 5.23.) For the special case when the radius of the sphere is 27, find
the volume V cut out of the sphere. Also, find the area of the surface cut out by the
cylinders.

Answer: V = %(27)3; A = 8(2r)2.

A modern solution is given on page 186.

Figure 5.23. Find the volume of the sphere remaining after
two cylinders intersect it. Find the area of intersection.

Solutions to C[/\apfey* 5 Problems

Problem 1
If (7/9)N equals a number whose last two digits are 68, then we can
write (7/9)N=100a + 68, where a is some integer > 0. Hence

7TN=900a+9 x 68.
Similarly, we have (5/8)N= 1006+ 60, where b is another integer, or
BN=2800b+ 8 x 60.

Multiplying the first equation by 5 and the second by 7 gives 35N =
4,500a + 3,060 = 5,6006 + 3360, and so 45a — 564 = 3.

Since from the last equation 15a¢— (56/3)b=1 and 56/3 = 18 2/3,
one sees that » must be a multiple of three. One easily finds that the
least integers @ and b solving this equation are a= 15 and 6= 12.
Substituting into either of the above equations gives N= 2016.
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We can, however, make an easy problem more difficult. The two inte-
gers 45 and 56 have no common divisor except 1, and so they are called
“relatively prime.” In general, dividing a number a by a number b gives a
quotient and a remainder, in other words, a= ¢X b+ . In our case

56=1x45+ 11,
where ¢=1 and r=11. Similarly,
45=4x11+1
and
11=11x1+0.

This sequence of successive divisions is an example of Euclid’s algo-
rithm.? One can easily show that the last nonzero remainder is always
the greatest common divisor of a and b, in our case 1. We can also
reverse the procedure and solve for the remainders:
1=45—-4x11=45-4(56 —4b) =5 x 45 — 4 X 56, which is the same as
15 x 45 — 12 x 56 = 3. Notice that 15 and 12 provide the answer to the
problem. The moral of this shaggy-dog story is that, any time the
greatest common divisor of @ and bis 1, one can write axX c—bXx d=1,
where ¢and d are the given coefficients to a and b.

The Japanese learned of this algorithm through the Chinese,
independently of the West.

Problem 2
The area of the original trapezoid is S= [(a+ b)/2]h, and so the area

of the smallest trapezoid is S/n = [(a+ k)/2]h , where h, is its height.
Dropping the dashed perpendicular as shown in figure 5.24, we then
have by similar triangles

Solving these equations for nin terms of #, @ and b gives the result
oot b\[ h)|_b*-a®
a+k)\h ) k2—a%

3For more on Euclid’s algorithm, see, for example, Oystein Ore, Number Theory and Its
History (Dover, New York, 1988).
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Figure 5.24. Drop the indicated dashed line. Y
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Problem 3

We are given that AC=2a= 85 in figure 5.2 and that BD = 2b=42.
Let ¢c= AB, and so ¢ = Va2 + b2 = 47.40516. Further, if ZA =20, then
sin 8= 1/(a— 1) = b/c. Solving for r gives

ab
b+c

=13.04726 or 2r =26.0945.

Y =

To find ¢, let k be the distance from the center of the rhombus to the
upper small circle, in which case k = /(¢ +r)?> —r2. Then, similarly to
what we just did, ¢/(b— k) = a/c. Substituting for k gives, after a bit of
algebra, the quadratic in ¢

V2 —2a(bc+ ant+ a®b>=0,

with solution

[1£1-b1/(ar +bc)?]
b2 '

t = a(ar + bc)

In this case the relevant root is the smaller one, which is numerically
2t=12.34694.

You might notice that we have obtained different values from those
on the tablet, the ones given on page 147. Those who have done the
chapter 4 problems know that such mistakes happen often in tradi-
tional Japanese mathematics, and the reason is typical: The proposer
of the problem was actually copying the figure from a book, one by
Miyake Chikataka (1662-1745), called Guo Sanpo, or Concise Mathemat-
ics, which was published in 1699. Unfortunately, the eager disciple got
the figure wrong. The correct diagram is shown in figure 5.25.
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<+ >
c < A
<\ v >

Figure 5.25. The original figure for
problem 3.

In this case, ¢/(b— ) = a/c, which leads to (= ab/(a+ ¢) =9.927 or
2t=19.854, the answer that was stated on page 147. Thus, the student
wrote down the right answer but for the wrong reason. An instructor
grading the tablet would take off points for not showing the work.
Students, it seems, have not changed.

Problem 4
Call p the altitude of the small right triangle on the lower left-hand

corner of figure 5.3. Then, from similar triangles, we have the ratios
(a—k)/k=a/cand p/k = b/c, which in turns gives k= ac/(a+ ¢) and
p=(b/c)k=ab/(a+ ).

Next consider the hypotenuse of the small right triangle contain-
ing the inscribed circle. From the equality of external tangents,

c—k= (k=7 + (b— p— 1), which implies 2r=b— p+ 2k— ¢, or upon
simplification, @\
9y — (a+b—c)c'
atc

If, for example, a= 36, b= 15, then ¢= 39 and 2r= 6.24.

Problem 5
Here is a solution by traditional methods:

The total number of small circles is n(n + 1)/2. (See chapter 2,
problem 4-7.)

If ¢is the radius of one of the small circles, then the side of the
equilateral triangle formed by the pyramid (with vertices at the center
of the corner circles) has length 2(n — 1) ¢ The radius r of the circum-
scribed circle is thus

2(n—1)

V3

={+ [
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The required area is S = 7 — [n(n + 1)/2] 7, or, substituting for

2
G- ”[(H 2(:%1)J _ n(n2+ 1)]#'

Solving for ¢ gives

_ 6S
m(n—1)(5n—14 +83)

Problem 6
The original solution from the 1840 book by Heinouchi Masaomi

(?=?) Sanpo Chokujutsu Seikai, Mathematics without Proof, says: Draw the
three dashed squares (figure 5.26) and contemplate the figure in
detail; the result is trivial.

Actually, it is almost trivial. Figure 5.27, which contains a few labels,
shows directly that ¢= ¢, = ¢, = ¢; = ¢, and that therefore point M is the
midpoint of the side. Thus, MD = b/2.

Similarly, p= p, = p, = p, = p, implies that Nis the midpoint of the
side and that ND=b/2.

So, we know that AMSD and ANDT are congruent with MS= p and
NT = q. Hence Sis the midpoint of MD, and MS= SD, = p. But this
means that triangles MDS and DSD, are congruent, which immediately
implies b= 2d.

Figure 5.26. “The solution is trivial.”
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P2 az
Figure 5.27. “Now the solution is trivial.”

Problem 7
We offer a traditional solution from the manuscript, Zoku Shinpek:

Sanpo Kai, or Solutions to the Zoku Shinpeki Sanpo, by Okayu Yasumoto
(1794-1862).

Referring to figure 5.28, let R be the radius of the large outer circle,
p=R-rand ¢= AB. The marked angles [Exercise: show they are
equal] allow us to use similar triangles, such that

2n _4/2

r.ozan
pp 2

= |3

Figure 5.28. Similar triangles.
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Hence, pg= 8nr=8¢r*/p, which immediately yields (R—1r)? = p* = 8%,
or R=(1+ «/g .

Sis defined as the area of the large circle minus the area of the ten
small circles, so S = 7R? —107r2 = ﬂ(?«/g —1)r2, which gives the

desired result
S
r= |——.
m(2V8 —1)

In his example, Kawano, who hung the tablet, showed exacting work,
stating that, if 7= 3.1416, then S=234.09 and 2r=8.000178177.

This problem is interesting because we can pack nine circles of
radius rinto a circle of the same radius R = (1+ V8 )r, as shown in figure
5.29. (The algebra is left as an exercise.)

Figure 5.29. Nine circles of radius r can also be packed into
the same circle of radius R.

In 1717, Minami Koushin hung a tablet in a small shrine in the
samurai Egawa’s garden, which is located in Shizuoka prefecture. On
the tablet were two figures, the same as figures 5.28 and 5.29, which
asked for R for nine and ten circles when ris given. The problem was
recorded in the unpublished 1830 manuscript of Nakamura Tokikazu
(?=?) Saishi Shinzan, or The Mathematics of Shrines.

Problem 8
This beautiful solution is quoted from Furuya Michio’s 1854 book,

Sanpo Tsusho, or Mathematics.
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Figure 5.30. If Ris the radius of the outer circle, sis
the perpendicular distance from the center of R to
the chord on the right, and p is the perpendicular
distance from the center of Rto the line joining the
centers of circles band d.

Let R be the radius of the big outer circle and s be the perpendicu-
lar distance from the center of R to the common tangent between the
two circles a and b (see figure 5.30). Then by Pythagoras we have
(R—d)?=p*+ (s—d)%, or d= (R*— p* - s%)/2(R— s5), where p is the
perpendicular distance between the center of R and the line connect-
ing the centers of circles b and d.

Similarly, b= (R? - p* - s?)/2(R+ s), and dividing by the previous
expression gives d/b= (R+ s)/(R— s). Because the circle Rand the initial
chord were given, this ratio is a constant, and by symmetry it must apply
to the other side of the diagram. Thus ¢/a = d/b. Repeating the argu-
ment with circles e and f gives d/f= c¢/e. Therefore b/a= d/c= f/e.

Problem 9
The answer is

. a+b+c—+2c(a+b+c)
= ; .

We here quote the original solution from the 1837 book Keibi Sanpo
or Hanging Mathematics by Horiike Hisamichi (?—-?).

Draw the auxiliary lines shown in figure 5.31. Now just add up the
areas of the triangles in the figure. We have

AABC=%ab=72+2X%(a—r)r+2X%(b—r)r—A+2><%cr+A,
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a-r

Figure 5.31. Draw in the auxiliary Y
lines shown. Bear in mind that two r
tangents to a circle originating

from the same point Pare the C
same length - b-r -

where A is the small area shown. Thus 212 = 2(a+ b+ ¢)r+ ab=0, or by
the quadratic formula

. a+b+c—\/(a+b+c)2—2ab _a+b+c—2(a+b+c)

2 2
QED. One could hardly ask for a simpler solution.

Problem 10
We present a traditional solution from the (1879) book Meiji

Shogaku Jinko-ki, or the finko-ki of the Meiji E'va, by Fukuda Riken (1815-
1889). Referring to figure 5.32 and equating areas,

AAH'C=AAOH + (2A0HC — AOKF) + 2A0’H’C + AO’K’F).

Figure 5.32. Draw the auxiliary lines shown. Note that
FK=FK.
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But AOKFand AO’K’F are congruent, and so their contributions cancel
out. With the side of the equilateral triangle = 24, the above expression
amounts to

%a«@a = %r«@r +7r(2a—3r) + ra.

Simplifying gives J3r2 —6ar +v/3a2 =0, or (r —/3a)? = 242, which
immediately yields
r=W3-v2)a

Notice that the method of solution is essentially the same as in
problem 9.

Problem 11
The answer is

b_a+6\/;+c
—

To solve the problem we realize that the diagram is symmetrical
around the centerline and so we only need to concentrate on one side,
as in figure 5.33. From the drawing, convince yourself that

vt w=x+Y.

Figure 5.33. The auxiliary lines help find 5 in terms of @ and .
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The Pythagorean theorem applied to the obvious triangles in the

figure then gives

or

obe +2Vab = (b +¢)? — ¢ +(a+b)? — a2,

2(\/g+«/;)—\/b+2c =«/b+2a.

Squaring both sides and factoring, one finds

b +2 = a +3e.

Solving for byields the result stated above.

Problem 12

From figure 5.34, we see that r= [+ h. Furthermore, triangles ADE

and CFG are similar, so the marked angles are both A/2, while tan (A/2) =
r/(b—r). Then, using the Pythagorean theorem on triangle DFK gives

or

r:l+h=2\/;1+w,

r

21’\/; r2
Tl+_b J?l:b )
-7 -7
A
/
/
/&_/
7 A2
/
H )
/
/
/
c /
! b
/
/
Df--\----4E
I\
\
I \
r: A
I AN Al2
! G
KL - - % )
' c

a bt

Figure 5.34. Draw the dashed lines and use similar triangles.
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which is a quadratic equation in \/Z . Completing the square yields

2
r«/; o br?
(“Tl +b—rj S (b-n)?

Solving for r, gives

or

Using the same method gives

2

P
n —m.

2

r r

Problem 13

Let p be the distance from the center of either of the large circles
R to the point where the radius R is tangent to one of the circles r
(see figure 5.35). Then we have both (R— 2=+ p? and
(R+1)%=1"+ (3p)?. Solving these equations simultaneously yields

2
=—R and p=
r 5 V4

D

1 r 1)

V5

Figure 5.35. First find pin terms of R.
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Figure 5.35 also shows directly that AC = 9\2R + 2p, or

AC = (2\/5 + Q/N/E)R. (2)

One can also easily get

AD = R+ 2Rt +1 = R ++1)2. (3)
Because we also have AC = «/§AD, equations (2) and (3) give

(M%J R=2(/R + )2

which is a quadratic equation in ;. Solving it in the usual manner
gives, after some algebra,

2
t= (\/2+2/«/E —1) gr.

(There is another root, but you can easily convince yourself that it
cannot be reconciled with the figure.)

The problem is essentially solved, but the quantity in parentheses
can be written as

2
(1/2+2/m—1) =3+92/V10 =22 +2/410 =3+ 0.4 —2y2+0.4.

We are asked to find rin terms of ¢, and so
0.4¢

r = >
(V0.4 +3)—J4(4/0.4 + 2)

as stated.

Problem 14
The answer is

t ¢
a=(1+k)?®2, where k= |=.
k V1

The problem is easily solved. Call 8 the vertex angle CAB. Then, by
similar triangles, figure 5.13 shows that

1 a-t -t t—t t t
tanf = — = =1 2 e 1,=,2,.
k ¢ ly 4 L=t -1
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Solving each equality gives

1+k
d—t(T), (1)

2
1+% 1+k 1+%
A N COTI
H = Lt- ty = ! H = ! 2t (3)
k) k)t +r)

Eliminating ¢ between equations (2) and (3) givesk = \/t,/15.
Substituting ¢ = (1+ k)2¢; from equation (3) into the expression for a
in equation (1) yields the stated answer.

One incidentally finds the simple relationship Vi = \/E +4/t3, which
was written in the 1834 manuscript Yusai Sangaku, or Mathematics of
Yusai, by Tani Yusai (1802-1841).

Problem 15
We follow basically the same procedure as in the solution to the
previous problem. Figure 5.14 shows that
a_ll 11_12 12_13

tan A =< = = = 3 —...,
L Ly ly

Multiplying these out shows that aly = {f, [l =13, l,l, = 1%, and
so on, which also means that

l
l—1=—2:l—3=---=constantsk.
a I I
With this definition, [, = ak, I, = kI, = ak?, I, = kl, = ak®, etc. The total
length of the sides of the squares is therefore

which we recognize as a geometric series from problem 4-8 in chapter
2. This sums to
= a —a = ll .

1-k 1-k

Notice also that tan A= a/b= (a—[)/l,, which implies b=1[ /(1 - k).
Further, the area of the squares, $/2 can be obtained merely by
substituting a?k? for ak into equation (1). Then the desired area, the
area of the triangle minus that of the squares, becomes

L

175
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o

z R
2k(1 k) 1—k2  2k(1+k)

l\DI»—‘

From Eq. (2), k=1 - [,/L. Plugging into the expression we just got
for S, gives, after a little algebra,

3 _ 2
112[2 JI /S+1/4}L= oL

1-12/25 3/2+\[2/S+1/4°

the last of which was written on the tablet. The following example was
written too: If L =308 and S= 9702, then [/, = 132.

A Problem 16
Draw the bisector of ZCin figure 5.15. Then, similarly to the situa-
tion in figure 5.36,

) n—ry Ty —T
sin(LACB/2) = 422 3
ntrn ntn

which implies that 7§ = n;, or that 7, is the geometric mean of 7, and
7,. In the same way, 73 = ryr,, and so

1 75 7

1__ 1B _

L (1)

o T3 N
where kis a constant.

By connecting the centers of r,, r,, and ¢, applying the Pythagorean
theorem, and then doing the same for the other sets of circles, one
easily shows that

L_L+L__(1+LJ @)
N R i ) A
From this set of equalities and equation (1) we have

RER I LL(HLT 1
Vi At \/g Jr Vk ty’

which immediately yields the final result 3 = ¢t,.
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Figure 5.36. The dashed lines give
C  sin(B/2) = (r, —1y)/(r, + 1,).

Problem 17
Considering £B, figure 5.36 shows that sin(B/2) = (r, — r,)/(r, + 1,),
or, letting k= sin(B/2),

1-k
= .
1+k

1=k _(1-kY
ST 1+k 0 1+k) "

= = _1_k 4T
> \1+k) "

Solving this equation for k gives

Ty

Similarly,

and so forth. Hence,

4y —4
k=sin(B/2) = \/71 \/Z (1)
% +47%
Notice also from figure 5.36 that
tan(B/2) = —1 (2)
a-rn

Write the basic trigonometric identity cos®(B/2) +sin?(B/2) =1 as

1 1
- tan2(B/2) sin2(B/2)’
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Then, inserting the expressions from equations (1) and (2) gives

a—n: %4_%2_1: QL{/E

or, solving for a,

2r, 2r,
a=—-1 %41[r§5+71=—11lTr5+71,
‘{/7714”?) — 1 T—1’5
3/4

where we have multiplied the top and bottom of the first term by r;

and let T = 4/r;r. We have thus found «in terms of 7, and 7, as required.
At the same time, since A=90° - B,

1—tan(B/2)

1+tan(B/2)’

or, from the figure and the expression in equation (2) for tan(B/2),

tan(A/2) = tan (45" — B/2) =

n _1l-n/(a—n) _a-2n

b—rl_1+rl/(a—rl) a
Thus, finally,
b= 2n(a—n)
a—2n

and the problem is solved.

Problem 18
The solution is left to the reader.

Problem 19
To solve this problem we need consider only one of the ellipses, say

the one on the right. The equation for a vertical ellipse displaced a
distance balong the xaxis is (x— 5)%/b* + y2/a* = 1, and the equation of
the circle is x? + y* = R%. Eliminating y? yields a quadratic for the two
points of intersection:

1 R2(a? - b?) a?bh?
x, =<—|1x,]1- .
* {b{ at :|} a? — b2
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However, from the symmetry of figure 5.18, we see that the two roots
x, must be the same, which implies that the discriminant (the quantity \

under the radical) must vanish. Setting it equal to zero and solving for
byields the result "",

b=a\1-(a/R)?.

Problem 20

Figure 5.37. Drop a perpendicular k through
the center of r,.

We first prove the following little theorem quoted from Aida Yasua-
ki’s book, Sanpo Tenshoho Shinan (chapter 3):

Three circles r, r, and r, touch each other externally (see figure

T
5.37). Two of the circles, r, and r,, are tangent to the line /, while the

third circle, r,, is tangent to a parallel line /. Then,
_ [y + 1) = 2nn I

8nry

; 1)

3

where £ is the distance between /and k.

To prove this theorem, first drop a perpendicular line k& from f
through the center of r, to I. The distance between the center of r,
and kis s; the distance between the center of r, and kis 4. As in many
other sangaku problems (e.g. problem 12), from figure 5.37 we see that
by the Pythagorean theorem the horizontal distance between the
centers of r, and r, is

S+t=2\nn. (2)
But Pythagoras also tell us that

2= (r, + 1) = (h=ry—r)?and £ = (r, + 1r)* = (h— 1, — 1,)% (3)
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Expand these expressions, take roots to get sand ¢, and insert the
results into Eq. (2). After some tedious algebra, one gets

8hnrry = 4r3rd — dhnry(n +1y) + h2(n +15)2,

which is equivalent to (1).
We now solve problem 20 proper. Applying the above theorem to r,,
7y, and rin figure 5.19, we have

[A(r; +175) — 217512
Bhrry ’

where 7 is considered unknown. But, from figure 5.19 we also have

. [A(ry + 15) — 2157512
8hryry '

Equating the two expressions and solving for % gives

L 2 G =) 2
[(71"'7"2)\/%_(72‘*'73)\/%] \/@‘72

But if this is true, then again the figure shows we must have

21 oA ToT,

3412y

h=—"2".
\Toly — 73

Eliminating A yields

vhs 1Y
VN3 =T ATly — 13

Solving for \/Z is straightforward and gives

7'3 7'17'2
N ,
(Vn +13)1 — 1341

or finally

2
Tol'g

[\/73/71 + 1), —n]? ’

n =

as stated.
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Problem 21
As we could not find a traditional solution, we present a modern one.

The strategy is to find the area of one of the ellipses in terms of 7, the radius
of the large circle. We choose the coordinate axes to lie along the major
and minor axes of the horizontal ellipse, 2a and 20, as in figure 5.38.

The equation of the horizontal ellipse is

X2 9
a_Q + b_2 =1. (1)
The equation of the large circle with center at (0, p) is
X2+ (y—p)2=r= (2)

By considering the dashed equilateral triangle shown in figure 5.38,
one sees that the equation of the dotted tangent is

1
=—x+p. (3)
=R p
Inserting equation (3) for y into equation (1) gives

x2 [/A3)x+ pP _

1,
a? b?

Figure 5.38. Choose these coordinate axes.

181
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which has solution

(802 + a?) 3a2
a? (302 +a?)’

x {—Pi\/lﬂ —(p* - %)

However, because the dotted tangent intersects the ellipse at only
one point, the roots must be the same, implying vanishing of the
discriminant. This gives a relationship between a, b, and p:

_a®+3b?
—3

2

(4)

We also have from equations (1) and (2) for the intersection of the
circle and the ellipse

rP-O=p* 2

>

or

a2 — b2
= Y2 +2py+(r2 — p%2 —a?)=0.

As before, the discriminant of this equation must vanish. With expres-
sion (4) for p?, one easily finds

4a* = 312 (a® — 0?),

yielding an area for each ellipse of

445
A =mab = nNa?b? =mw,la* ——.
3r2
The area will be maximized when the quantity under the radical
is maximized. Taking the derivative and setting it to zero gives
4a® — 84°/r*> = 0, which means the maximum is attained when a? = r*/2

and S= 71'1’2/2\/5.

Problem 22

We give an original solution from Uchida Kytumei’s 1844 book Sanpo
Kyuseki Tsu-ko, or A General Course of Calculus, which is a good textbook
on integration. Uchida’s dates are unknown.

Let x be the variable of integration. For small increments Ax, the arc
segment Alin Figure 5.39 can be considered a straight line. Then
Ax/Al= p/r.
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d D m\ﬂ
N\

Figure 5.39. The large and small right triangles are
similar (see figure 5.41).

The area element is As = 27pAl = 27trAx. Integrating x from 0 to d
gives the desired area S= 27rd.

Notice that the traditional Japanese method is slightly simpler

than a typical first-year calculus approach, which might go like this:
dA = 27xdl, where here x = rcos 0 is the usual x coordinate and 6 the
usual angle in polar coordinates. Since dl = rd6, we get dA = 2mr?
cos 8dB and

0
A =27r?sin 0|7,

where 6= sin™(y/r). With d =y, — y, we get the same result, but with the
explicit introduction of trigonometric and inverse trigonometric
functions.

Problem 23
We give two solutions. The first is a traditional solution in the book

Sanpo Kyuseki Tsu-ko (see solution to problem 22).

As shown in figure 5.40, the surface area element AA = z(x)As, where
z(x)/x=h/kand k = +/r?2 —(r —d)?. (If you are having difficulty with
this step, see the next solution.) Figure 5.41 shows that by similar

triangles As = (r/Nr? —x?) Ax.
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Figure 5.40. The linear increment along x is Ax; the curved
increment along the surface is As; the area element is AA. By
Pythagoras, k= /r? — (r — d).

D

X
o
k
Figure 5.41. By similar triangles the two indicated angles at ' AX
the lower right are equal. Therefore d s
As = (r/\/ r? — x? )AAx.
s
Going to the limit, the desired area is
A= QJ.dA = QJ z(x)ds
k h - k
_ofthr X - &[_ﬁ _XQ]
0k /y2 — 2 k 0
2hrd 2hr
(5)

T V2d-a®  2r/d-1

In regard to this solution, we first point out that traditional Japanese
mathematics did not contain the idea of indefinite integration, only



Harder Temple Geometry Problems 185

definite integration, and so integrals were used only for finding areas,
volumes, and surfaces of certain figures. Often, practitioners used
mechanical means to get numerical answers. (We discuss this more
fully in chapter 9.) What’s more, the above answer is surprising be-
cause it does not contain 7, that is, it is not an obvious fraction of the
surface area of a cylinder, 27rh. We now give a modern derivation that
may be more convincing.

Imagine that a plane slices a cylinder to form an ellipse, as in
figure 5.42. In spherical coordinates one can show* what is fairly
evident from the figure, that the height of the point at which the
plane intersects the cylinder surface is z(¢) = const X sin ¢. To deter-
mine the constant, in this problem we have a boundary condition

Figure 5.42. A plane slices the cylinder at an arbitrary
angle 6. The section is an ellipse. We see that
z2(@) = const x sin(@).

*In spherical coordinates, the unit vector in the R direction is R =isin 6 cos¢+jsin0
sin ¢ + kcos 6. The height z of a point above the x-y plane is just z= R cos 6. To find this as a
function of ¢, note that if, as in figure 5.42, the plane containing R is tilted in the y-z plane
at an angle B from the z axis, then the unit vector in the z~ direction has components 2’ =
—j sin B+ kcos . R rotates in a plane perpendicular to 2,502 -R=0. Working out the dot
product gives cot@=tan 3 sin@. But z= R cos8=1r cot6, and therefore z=r tanff sin¢, or
z= const X sin ¢.
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that the point at which the plane intersects the cylinder marks the
maximum angle ¢ =¢__ . At that point we are given z= /2. Hence
const=A/2sin¢___and

max

z sin @.

- 2sin ¢

max

But by definition As along the cylinder surface is rA¢. Hence dA = rzd¢
and the desired area is simply

S Th ¢max
2__ " inod
4 %ing,__ jo sin gdp
= .L[l —cos .. ]
2sin @y, (6)

But from figure 5.40 or 5.41 we see thatsing = k/rand cos¢, =
(r—d)/7 so

S hr

4 9 for/d-1’

in agreement with the traditional method. Notice that the traditional
solution uses the fact that the slope of the plane cutting the cylinder is
a constant, and thus z as a function of xis a straight line: z(x)/x = h/k,
as stated above. The increment Asis then found in terms of Ax, giving
the area element zAs. The modern version gets As directly in terms of ¢,
but z becomes a more complicated function of ¢.

Problem 24

We present a solution by standard modern calculus. To find the volume
cut out of the sphere by two cylinders, we find the volume cut out of a
hemisphere by one cylinder and multiply by four. We build the volume

element as zdxdy, as shown in figure 5.43. The equation of the sphere is
472 = 52 + 92 + 22, so we can eliminate zby writing z = /472 — x2 — 2.
Further, the equation of the cylinder is * = x* + (y— 7)2. Thus, the domain
of integration over, say, x is bounded by x = \/2yr — y2, or

V=4 [ zxdy = SJOQTdyJOWJ(QrV N
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Figure 5.43. The volume element of the sphere is
zdxdy and is integrated over the circle in the x-y
plane.

We now shift to polar coordinates ¢,0, with x= tcos 6, y=tsin 6,
* = x* + y%, dxdy = tdtd6. Then, with limits of integration given by
figure 5.44,

v=4f:;wﬁqu@n2—ﬂML

This is a standard integral that gives the result

_8ons(Z_2
V= 3(21’) (2 3)

2r t

Figure 5.44. Note that ¢ = =2rsin 6.

max
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However, we notice that the first term is the volume of the sphere itself,
and so the desired volume is the somewhat surprising answer, again
lacking in 7’s,

16
Vsphere -V= ?(27)3,

which was written on the tablet.
There are several ways to find the area. Perhaps the most straight-
forward is to write

Azj J zds,

where in figure 5.43, ds? = dx® + dy* is the square of the infinitesimal
arc length along the curved surface of the cylinder (see problems
22 and 23) and where zis the height above the x-y plane of the
curve of intersection between the cylinder and the sphere (the solid
curve in the figure). We already know from the volume calculation
that along the cylinder surface x? = 2yr — y?, which gives

xdx = [r— y]ldy, and so

— 2 1/2
ds = Jdx® + dy? {%ﬂ} dy
X

7‘2 1/2d
BT

However, by inserting the above expression for x* into the equation
for the sphere 47 = x* + y? + 22 and solving for z, we get the height of

the curve of intersection in terms of y: z = /4r? —2yr. Thus

1/2
A= _[zds - \/573/2J.QT|:2T—_})2:| dy = @ﬁ/?J‘er dy.

0| 2yr—y yl/2

The integral is elementary and gives the result A = 47%. But this is for
the area of one-half a cylinder over one-half a hemisphere, so the total
area we want is eight times this, or A = 32,2 Notice once more that no
7 figures in the result.

This problem appears in many modern calculus texts as the solid of
Viviani (1622-1703). In Japan, the theorem was written down in the



Harder Temple Geometry Problems 189

1844 book Sanpo Kyiiseki Tsu-ko, or Theory of Integrations, by Uchida
Kytimei (?-1868). His solution, however, while employing only elemen-
tary methods, is extremely complicated and we do not present it. It can
be found in Fukagawa and Rigby, Traditional Japanese Mathematics
Problems (“For Further Reading: Chapter 6,” p. 339)



Plate 6.1. The original illustration from problem 12, originally proposed by Hotta
Jinsuke in 1788, as it appears in Fujita Kagen’s 1789 book, Shinpeki Sanpo.
(Collection of Fukagawa Hidetoshi.)
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J have been studying this problem for
fouy* onr five years and, at last, this
spring, J succeeded in solving it. But
the prob|em is no goocl. J recommend
that every student study more math-
ematics books rather than try to solve
such a problem.

—TFrom the Diary of Yamaguchi

KQV\ZQV\

‘L—he problems that find their way into this chapter are distinguished from
those of the previous ones by three non-mutually-exclusive criteria: The
algebra may be considerably more involved than for the problems of chap-
ters 4 and 5; the solutions may require a higher degree of insight, as well as
a familiarity with the properties of three-dimensional solids; and finally, to
make tractable some of the solutions requires techniques generally no lon-
ger taught at the high school—or even college—level. We speak specifically
of inversion and affine transformations. These techniques, which are actu-
ally not difficult to master, make solving some of the problems quite easy,
almost trivial; without them, solutions are nearly impossible.

Problems 1-4 fall into the first category. The individual steps are not dif-
ficult, but the algebra quotient may easily surpass what most students are
willing to endure. Problem 4 is of considerable historical interest, however,
and not as hard as it seems at first glance. Problems 5—8 may prove particu-
larly difficult because they involve ellipses, which are not commonly found
in Western problems. In traditional Japanese mathematics, on the other
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hand, problems involving ellipses are commonplace. The reason is that Japa-
nese geometers had a very simple way of looking at an ellipse—as a slice out
of aright circular cylinder, rather than as a conic section. Problem 5 explores
the Japanese view in detail and problems 6—8 exploit the results. You will
notice the striking lack of mention of foci. Indeed, in all traditional Japanese
mathematics, the only mention of the string-and-foci method universally
taught to Western students for generating an ellipse occurs in Ishiguro
Nobuyoshi’s unpublished 1815 manuscript “Sokuen Shiikiho,” or “Method
for Describing the Ellipse.”

Problem 8 is fairly simple and could have been included in the previous
chapter, but it has direct bearing on the problems following it and so we
include it here. Problems 9-11, involving multitudes of circles, are simply
difficult.

The three-dimensional problems 14 and 15 are not computationally in-
tensive, but two of them do require knowing the properties of many-sided
solids, while the remaining problems require mastering the inversion tech-
nique.

We would not expect many readers to tackle the conundrums in this
chapter, but we hope that everyone will glance at the extraordinary solu-
tions.

Problem 1
This problem, proposed by Maruyama Ryoukan in 1800, was written on a tablet hung at

the Sannosha shrine in Tsuruoka city of Yamagata prefecture and later recorded in the
1807 book Zoku Shinpeki Sanpo by Fujita Kagen.

Figure 6.1. Find r,in terms of r,, r,, and 7,
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Quadrilateral ABCD is inscribed in a circle, as shown in figure 6.1. Let r,, r,, 7., and 7,
be the radii of circles inscribed in triangles ADAB, AABC, ABCD, and ACDA, respectively.
Find r,in terms of r,, r,, and 7,

Answer:r,=r,+r

o, B D—errrA+7C=TB+rD.

Example: v, =1, r,=2, and r, = 3; then r,= 4.

A detailed solution is given on page 208.

Problem 2
This problem was originally proposed by Sugita Naotake on a sangaku hung in 1835 at

the Izanagi shrine in Mie prefecture. We have taken it from the 1837 collection Kakki
Sanpo, or Concise Mathematics, by Shino Chigyo (?-?). In his book, Shino records prob-
lems on twelve tablets hung between 1832 and 1836. They are all lost.

A

c Figure 6.2. Find the area of AABCin terms of o, 3, and ¥.

As shown in figure 6.2, draw three lines AE, BF, and CG that pass through any point P
inside a triangle ABC.! Consider the three indicated areas oc= AAPF, = AFPC, and
y= ACPE. Find the area S of AABCin terms of ¢, fand ¥.

Answer:

__Ba+pa+p+y)
Bla+B+y)—y@+p)

'Lines drawn from the vertex of a triangle to the opposite side with no other restriction
are known as Cevians, after the the seventeenth-century mathematician Giovanni Ceva.
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Plate 6.2. The original
illustration for problem 2,
originally proposed by
Sugita Naotaki, as it
appears in Shino Chigyo’s
1837 book Kakki Sanps. On
the same page can be seen
a drawing for a more
advanced problem, similar
to problems 16 and 17.
(Aichi University of
Education Library.)

Example: If a= 35, f=28, and y= 21, then S= 144.

We give both a traditional and a modern solution on page 210.

Problem 3

This problem was originally hung in 1806 in the Atsuta shrine by Ehara Masanori, a
disciple of Kusaka Makoto (1764-1839). The tablet, which contained only this problem
and no solution, was subsequently lost. However, at an unknown date the mathematician
Kitagawa Moko (1763-1833) visited the shrine and recorded the sangaku in his note
“Kyuka Sankei,” or “Nine Flowers Mathematics,” along with his solution. More recently,
the shrine constructed a replica from Kitagawa’s manuscripts (see plate 6.3). Warning:
This may be the most involved exploitation of the Pythagorean theorem you have ever seen.
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Plate 6.3. Measuring only 45 by 30 cm, this tablet is a replica of one that was
originally hung in 1806 in the Atsuta shrine and subsequently lost (see problem 3).
The shrine reconstructed the replica shown here from the manuscript of
mathematician Kitagawa Mo6ko. The actual replica is in color and another replica
from the shrine with the same color scheme can be seen in color plate 12. (© Asahi
Shinbun.)

A D

A

Figure 6.3. Find rin terms of CH.
C
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As shown in figure 6.3, the triangle ABCis isosceles. Two lines BD and CH divide it into
three smaller triangles, each of which circumscribes a circle of the same radius » Find r
in terms of CH.

Answer: r= CH/4.

We give Kitagawa Moko’s original solution from his notebook on page 212.

Problem 4
Proposed by Shichi Takatada, this is the second problem from the left on the

Meiseirinji tablet (color plate 8) and is connected with the problem known in the West
as the Malfatti problem. Caution: This is a long problem, but the solution is relatively
straightforwanrd.

As shown in figure 6.4, r,, r,, and 7, are the radii of three circles that touch each other

externally. Construct a triangle that inscribes the circles and find the radius r of the

triangle’s inscribed circle (incircle) in terms of r;, r,, and 7,.

Answer:

2\ [nTory

r = .
NN ARt _\/71 +7 + 73

We give a traditional solution on page 216 and a discussion in chapter 8.

Figure 6.4. Find the radius of the dashed circle rin

terms of 7|, 7,, and r,.

Problem 5
This problem is the third from the right in the photo of the Meiseirinji tablet, color

plate 8. It was proposed by Kawai Sawame, a sixteen-year-old girl. Warning: This is a very
long problem.
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1 Figure 6.5. Show that r, = r /3.

Here we have one ellipse and five circles of radii r,, Ty, and r,. Two circles of radius 7,
and one of r, are tangent to the line /, as shown in figure 6.5. Assume r, is the radius of

curvature of the ellipse at the end of the major axis. Show that r, = r,/3.

A traditional solution to the problem is given on page 218.

Problem 6
This problem was written on a sangaku, now lost, dedicated in 1850 to the Ushikawa

shrine, Aichi prefecture. Caution: This problem is easy but requires advanced techniques.

Figure 6.6. Show that the side of one of the squares equals the
minor axis of the ellipse.
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As shown in figure 6.6, the major axes of two identical ellipses £, and E,, which have a
common center O, are perpendicular. The vertices A, B, and D of square ABCD lie on E,
while vertex Clies on the major axis of E, and also touches E,. Show that the side of the
square is equal to the length of the semi-minor axis.

Because this problem was on a sangaku, the author, wanting to make it attractive and
interesting to passers-by, originally asked for the lengths of squares in a kite flying in the
sky, a kite formed by the two ellipses.

A solution can be found on page 222.

Problem 7
This problem was written in 1822 on a tablet in Iwate prefecture. The tablet is now

lost. Advice: Do the previous problem first.

On the ellipse shown in figure 6.7, mark three points A, B, and Csuch that the areas of
the curved sectors S, S,, S, are equal. Show that the area of triangle ABC = (3/4)\/% ,
where aand b are the semimajor and semiminor axes of the ellipse.

Turn to page 223 for a solution.

Figure 6.7. Find the area of the triangle when the areas of C
the curved sectors are equal. v
B

Problem 8
Also from a lost sangaku, this problem was originally presented in 1842 by Kato

Yoshiaki, Yoshida Tameyuki’s student, who hung the tablet in the Ohsu Kanon temple
of Nagoya. Advice: Do problem 5 first.

Figure 6.8. Show that »,(r, + r,) =, (r, + ().



Still Harder Temple Geometry Problems 199

As shown in figure 6.8, a chain of ten circles with radii r, . . ., r,, is inscribed in an
ellipse, such that each circle touches its two neighbors as well as the ellipse at two distinct

points. Shown that r.(r, + r.,) = r,(r, + 7,,).

A traditional solution is outlined on page 224.

Problem 9
This problem was proposed in 1828 by Tomita Atsutada, a student of Ono Eijyu’s
school, and hung in the Shiroyama Inari shrine of Annaka city in Gumma prefecture.
We know of it from the 1830 book Sanpo Zasso, or Concise Mathematics, by Iwai Shigeto.

Two circles of radii @ and b touch each other externally at a point and also touch a
larger circle Ointernally (see figure 6.9). Two others circles of radii ¢ and d touch each
other externally at Pas well, and also touch circle Ointernally. Find 4 in terms of «, ¢, and d.

Example: a=2, c= 3, and d=4; then b=12.

The answer and a solution by traditional methods can be found on page 225.

e

Figure 6.9. Find b in terms of a, ¢, and d.

Problem 10
We mentioned in connection with problem 26 in chapter 4 that during the later Edo
period it became popular to consider problems that could be drawn upon folding fans.
Here is another and more difficult example, dating from 1865; it is the rightmost prob-
lem in the photo of the Meiseirinji temple sangaku, color plate 8, and was presented by
Sawa Keisaku.

As shown in figure 6.10, inside a fan-shaped sector five circles touch each other; one is

a “red” circle of radius r;, two are “green” circles of radius r,, and two are “white” circles
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Figure 6.10. Show that 2(r, + r;) = r when 7, is maximized.

of radius r,. The radius of the sector is r, and the circles touch each other symmetrically
about the center O. We take the angle of the sector to be variable and r constant. As the
angle is varied, the inner radius of the sector ¢is adjusted so that the five circles continue
to touchy; 7, is also allowed to vary, while the other radii remain constant. Show that

2(r, + r;) = rwhen r, is a maximum.

A full solution to the problem is given on page 226.

Problem 11
Proposed by Matsuoka Makoto, this is the second problem from the left on the second

Atsuta tablet, color plate 12. Warning: This is a difficult problem.

A small circle of radius rsits in a big circle of radius R such that four circles of radii a,
b, ¢, and d touch it externally, as shown in figure 6.11. Moreover, eight other circles are
arrayed among a, b, ¢, d, r, and R as shown. Prove the following simple relation:
1 1 1

1
a b ¢ d

Turn to page 227 when you need a solution.

Figure 6.11. Find the relationship between a, b, ¢, and d.
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Problem 12
This problem was originally proposed by Hotta Jinsuke of the Fujita school and

written on a tablet that was hung in 1788 at the Yanagijima Myokendo temple of Honjyo,
Tokyo. It was later recorded in Fujita’s book, Shinpeki Sanpo.?

As shown in figure 6.12, a large circle of radius r contains two circles r, and #/, each of
radius r, = 7/2, which are both tangent to each other and touch circle rinternally. The

7

bottom circle, 7|, also touches a chain of circles r , as illustrated. Further, a chain of circles

with radius ¢ is placed between the circles r, and 7] such that each ¢, touches 7} as well as
circles r and r,_,. Find nin terms of rand ¢ . (Equivalently, find r, and ¢ in terms of n.)

nzl( I —14 +1].
2\,

Example: If r=97.5 and ¢ = 0.1, then n=16.

Answer:

We give a traditional solution on page 228, and also devote much of chapter 10 to a solution using

the method of inversion.

Figure 6.12. Find the index 7 of the nth circle in terms of
r,ori.

Problem 13
Yamamoto Kazutake proposed this problem, which was written in 1806 on a tablet

hung in the Iwaseo shrine of Takamatsu city, Kagawa prefecture. It was later recorded in

2This problem also served as the opening illustration for the Scientific American (vol. 278,
p- 62, 1998).
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Figure 6.13. Find xin terms of R.

Fujita’s book Zoku Shinpeki Sanpo. Note that this is the same as problem 5 in Yamaguchi’s
Diary, chapter 7. Warning: This is not easy.

In a large circle of radius R, an equilateral triangle of side x, three circles of radius a
and six circles of radius b touch internally as shown in figure 6.13. Find xin terms of R.

Answer: x = (573 +102 — /11,3643 +19,605)R/2.

Example: If 2R=103.5, then x=59.20. . ..

A traditional solution can be found on page 231.

Problem 14
We know of this problem from the 1830 book Sanpo Kisho, or Enjoy Mathematics Tablets,

by Baba Seitoku (1801-1860). In the book, Baba records thirty-six sangaku from Tokyo
shrines. The problem was originally proposed by Ishikawa Nagamasa, a student of the

Figure 6.14. Find the radius of the large ball, R, in terms of the
radius of the small spheres, r.
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Plate 6.4. The original illustration from problem 15 as it
appears in Fujita Kagen’s 1796 edition of Shinpeki Sanpo.
(Collection of Fukagawa Hidetoshi.)
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school of Baba Seito (1777-1843), Seitoku’s father, and written on a tablet hung in 1798
in Tokyo’s Gyitdo Tennosha shrine.

As shown in figure 6.14, 30 small balls of radius r cover one large ball of radius R, in
such a way that each small ball touches four other small balls. Find Rin terms of =

Answer: R = \/g T.

A traditional solution is on page 234.

Problem 15
Kimura Sadamasa, a student of the Fujita school, proposed this problem, which was
written on a tablet in 1795 and hung in Kawahara Taishi temple, Kawasaki city, Kana-
gawa prefecture. It was recorded by Fujita in his Shinpeki Sanpo, second edition of 1796.
Advice: Do the previous problem first.

Twenty small balls of radius r cover one big ball of radius R where each small ball
touches three other small balls (see figure 6.15). Find Rin terms of .

The answer and a traditional solution can be found on page 234.

Figure 6.15. Find the radius of the large ball, R, in terms of the
radius of the small spheres, r

Problem 16
This problem comes to us from the book Kokon Sankan mentioned in problem 27,
chapter 4. It was originally proposed by Teramoto Yohachir6 and hung in 1823 on a
tablet in the Nishikannta shrine, Ohita prefecture. Warning: This is an advanced problem.

As shown in figure 6.16, a necklace of four small spheres 7, 7, r,, r, touches a large
sphere of radius R. The necklace also touches two spheres of radii @ and b, which in turn

touch sphere Rinternally. Find 7, in terms of r,, r,, and 7.



Still -Harclev"[femple Qeometry Problems 205

d R

Figure 6.16. Find the relationship between the radii of spheres

s Ty, 7y and 7.

Plate 6.5. An illustration for a problem similar to problem 16,
from Uchida Kyd'’s 1832 book, Kokon Sankan. (Aichi University

of Education Library.)
Answer:
7y 1 1 1 1
= or —+—=—+—.
n+r—(nrg/1) non N N

Example: ry =1, r,=2, r,=3; then r, = 1.2.

We give a modern solution on page 236.

Problem 17
This problem, famous in the West as the 1937 “hexlet theorem” of Frederick Soddy, also
comes from Uchida Kyo’s collection Kokon Sankan, having been originally proposed in
1822 by Yazawa Hiroatsu, a disciple of the Uchida school. The tablet on which the problem
was written was hung in the Samukawa shrine of Kézagun, Kanagawa prefecture. Warning:
The problem is either extremely difficult or extremely easy, depending on the method of solution.
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Figure 6.17. Find 7,in terms of a, b, 7, and r,.
As shown in figure 6.17, two spheres of radii @ and b lie inside a large sphere of radius
7, touching each other and sphere rinternally. A loop of n spheres of radii r, ..., 7,

circles the neck between a and b. Each of the spheres 7, touches its nearest neighbors, as

well as spheres a, b, and r. Find r,in terms of 4, b, r, and 7.

We give a traditional solution on page 236 and discuss the problem further in

chapter 8.

Problem 18
This problem was written on a tablet hung in 1804 at the Daikokutend6 temple,

Koishikawa, Tokyo. It was proposed by a student of Ichino Shigetaka and recorded in the
book Shame: Sanpu.

As shown in figure 6.18, on a sphere of radius 7, draw three circular arcsAB BC and
CA and let the straight-line segments AB= ¢, BC= a, and CA = b. Find the area § of the

spherical triangle ABCin terms of a, b, ¢, and 7.

Figure 6.18. Find the area of the spherical triangle ABCin

terms of a, b, ¢, and r.
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Answer

1-(1/2) [(a/20)2 + (b/20)2 + (c/2)?]
VL= (a/2r)21 1= (b/2)2][1 - (c/2r)*] |

Example: 2r=10, a=12, b=9, and ¢=5; then S= 37.761708184578.

S = 2r2cos‘1{

The original solution involved the calculation of a definite integral with the help of
numerous illustrations, and was so complicated that we do not reproduce it. The theo-
rem, however, was the same as that obtained by Leonard Euler (1707-1783), which can be
found in his Opera Omnia Series Prima, volume 29, page 253, “Variae Speculations Super
Area Triangulorum Sphaerocorum.” We say a few more words about it in chapter 8.

Problem 19
This is the leftmost problem on the second Atsuta tablet (color plate 12) and was also
proposed by Matsuoka Makoto. Warning: This is a difficull problem.

Find the surface area S on an elliptic cylinder with major axis 2¢ and minor axis 20
that is defined when the elliptic cylinder intersects perpendicularly two sectors of a right
circular cylinder of diameter D and height d. It is assumed that the two sectors touch at
point 7, which is aligned with the origin of the ellipse. (See figure 6.19.)

The rather involved solution is given on page 238.

Answer: We guess that the area is close to the areas of the two sectors themselves:
d
§=29S, = 4J' Dx — x2dx.
0

A discussion is given on page 238.

P) Figure 6.19. Find the area A on an elliptic cylinder that intersects

two sectors of a right circular cylinder. The diameter of the
cylinder is D and the depth of the sector is d.
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Solutions fov* le\ap+ey* 6 Problems

Problem 1
We quote an original solution from Okayu Yasumoto’s unpublished
manuscript “Solutions to Problems of Zoku Shinpeki Sanpo.” First,
three lemmas, which Okayu does not prove, are required:

(1) The area of a triangle ABC can be expressed as S, .= rs = (abc) /4R,
where a, b, and care the sides of the triangle; s= (a+ b+ ¢)/2 is the
semiperimeter of AABC; and rand R are the radii of the inscribed and
circumscribed circles of the triangle (see figure 6.20). This lemma
follows directly from two elementary theorems: one, that the area of a

triangle ABC can be written as S, , .= rs, where ris the radius of the

ABC
triangle’s incircle and is its semiperimeter; and two, that the radius R of
the circumcircle is R= abc/4S, ;..

(2) In figure 6.1, AB- CD+ AD - BC= AC - BD. This is known as
Ptolemy’s theorem in the West: “The sum of the products of the
opposite sides of a cyclic quadrilateral is equal to the product of the
diagonals.”® Ptolemy’s theorem is proven in any high school geometry
text and so we leave it as an exercise. Note: From this point on we will
use the following designations: AB=a, BC=b, CD=¢, AD=d, AC=e,
BD = f Thus Ptolemy’s theorem for this problem becomes ac + bd = ¢f.

(3) With these designations, abe+ cde= b¢f + adf. To prove this lemma,
refer to figure 6.1. We see that if Sis the area of the quadrilateral, then

a7/
,

Figure 6.20. The area of the triangle can be written as A = rs
and R= abc/4A, for sides a, b, cand semiperimeter s.

3A cyclic quadrilateral is one that can be inscribed in a circle.
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S = Jad sin A + § be sin C. But £A and £C are supplementary and so
S = % (ad + be) sin A. Similarly, S = Lab sin B+ cd sin D =
3 (ab+cd) sin B.

On the other hand, AABD is inscribed in circle R, so by lemma 1,
S.pp= adf/4R. Butalso S, ., = (1/2) adsin A, giving sin A= f/(2R).
Similarly, sin B= ¢/(2R). Eliminating sin A and sin B from the previous

two expressions immediately yields f(ad + bc) = e(ab+ cd).

Okayu’s proofis as follows.
Bylemma 1, S, = adf/(4R) =r,(a+ d+ [)/2, with similar expres-

> “ABD

sions for S, S,,,and S, . Therefore
adf abe
2R(a+d+ f) 2R(a+b+e)
VCZL; TDZL. 1)
2R(b+c+ f) 2R(c+d +e)
We have
2R(7A+rc)=bcf(a+d+f)+adf(b+c+f). @)

(b+c+ fllatd+ f)

The numerator of the right-hand side of this equation is
(a+ d)bef+ (b+ c)adf+ [?(be+ ad) = fab(c+ d+ ) + cd(a+ b+ )],

since [%(bc+ ad) = ef(ab+ cd) by lemma 3).
The denominator is f2+ fla+ b+ ¢+ d) + (b+ ¢)(a+ d). But, by
lemmas 2 and 3,

(b+c)(a+d) = (ac+ bd) + (ab+ cd) = ef+ (f/e)(ad + bc),

and so

denominator =

i[ef—i—e(a+b+c+d)+e2+bc+ad]=i[(d+b+e)(c+d+e)],
e 4

where lemma 2 has been used again to get the second equality. Equa-
tion (2) then becomes

dab(c+ d+e)+ cdla+ b+ e)]
(a+b+e)(c+d+e)
abe cde
+ )
a+b+e c+d+e

2R(ry + 1) =

or from equation (1) the beautiful result
Tt =t
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Problem 2
We first quote a traditional solution from the manuscript Solutions to

Kakki Sanpo by Furuya Michio (?—?). The date is unknown.
First we rotate the figure and label some points and segments as
shown in figure 6.21. Then, using area = (1/2) base X altitude,

1
$= 5 Ui (3)
1
o= 5 b hy; (4)
1
ﬂ = 5 b2h1§ (5)
1
a+f= 3 bly; (6)
1
a+ﬁ+y=§bh3. (7)
Also, by similar triangles,
g, = ok (8)
hy
_ Ity (9)
1 y ;

Figure 6.21. Note: [, = CH,, l;= CH,, t, = FH,, t, = FH,,
b= AC, b, = AF, b,= CF.
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hy _0—1 (10)
by b+t
The last equation can be rewritten as A, (b, + t,) — h,(b—[;) = 0. Eliminat-
ing ¢, and [, by equations (8) and (9) gives

Iyt Byl
%(h+~i3]—h{ —-12]=0

However, we also see from the figure that ¢, = b, — ,. Substituting for
L, yields

@@+ﬁ%ﬁ—bm=&

Now, eliminating all the /’s with equations (3)—(7), we quickly get

wa+B+y)  Blo+B+y)
oa+f S

—(a+p)=0,

and solving for S gives

__Ba+pa+p+y) _ Bla+p)a+p+y)
(@+B) —ala+B+y)  Pla+B+y)-ylo+p)
as stated on the tablet. The quoted example was also found on the
tablet.
The solution just given is somewhat cumbersome, and so here is a

slightly more elegant one, which is quite similar to a standard proof of

Ceva’s theorem.*

Figure 6.22. Define the areas X=ABPE, Y= APGB,

c and Z= AAPG.

*Proofs of Ceva’s theorem can be found in some elementary texts, in any more advanced
text, and on dozens of websites. Ceva’s theorem is not necessary for this problem.
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Referring to areas, let X=ABPE, Y= APGB and Z= AAPG, as in
figure 6.22. Then, from the figure, S= X+ Y+ Z+ ot + f+ 7. The
strategy is to find X+ Y+ Z. Recalling that the areas of triangles with
equal altitudes are proportional to the bases of the triangles,

CE _y _oa+B+y
BE X X+Y+2Z7Z’
and

AF o _a+Y+Z Y+Z
FC B B+X+y X+y’

where the last equality follows because if a/b= ¢/d then a/b=
(axc)/(bx d).
The two expressions imply

X+ Y+Z:wx’
14

a(X+7y)
—ﬂ .

Solving these equations simultaneously gives

Y+ 7=

)
| L) SR
B+ p) —oay
and
X+v4z=0C@BED)
B+ p) -ay
Finally,
S=X+ Y+Z+a+/3+y:ﬁ(a+ﬁ)(a+ﬂ+7/)
Bl +p) -ay
as before.
Problem 3

We give an original solution by Kitagawa Moko. It is somewhat
complicated and we hope that readers can find a simpler one.

First, notice from figure 6.23 that triangle CDB s isosceles. There-
fore let b= BC= CD, as indicated. We also let a= BD and k= CH. Next,
as shown in figure 6.24, mark with a compass two points D’ on ABand
D” on AC such that BD= BD’ = CD” = a. Because AABC is isosceles,
D'T"=D"T” and by construction D'T" = DT; consequently DT'= D"T".
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Figure 6.23. The tangents from vertex Cintercept identical
circles at identical distances. Therefore angle HCB and
angle HCD are equal, and triangles CHB and CHD are
congruent. Hence triangle BCD is isosceles. We define
BC=CD=b, BD=a, and CH=k (see figure 6.24).

Tand T” are equidistant from D and therefore DT” = D”T”. Defining
s=DT= DT” we can write

s:CD_CD:a_b. (1)

2 2

Further, by examining the tangents in figure 6.24, we see that

a a
b=(k=1+|=—-r|{==—+k-2r 2
(k=) (2 j 5 (2)

Hence, from equation (1)
s=8_k-2r (3)
4 2

Also, with the Pythagorean theorem, figure 6.23 shows that &* = (a/2)? + k.
Squaring equation (2) and equating the two expressions quickly yields
gz drtk=n) 4)
k—2r
Next, as shown in figure 6.25, inscribe a circle of radius Rin triangle
BCD. With the help of the figure it is easy to show that

CQ=J(k—R)2—R2=Jk2—2Rk=b—§“=k—2r, (5)
where the last equality follows from equation (2). Squaring equation
(5) gives 2Rk = (4kr) — 4r°, or

_2r(k=1) (6)
-

R
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Figure 6.24. Let a= BD and b= CD. For AABC
isosceles, we have by construction D'T" = DT'=
DT” = D"T”. Therefore 2D"T” =2s= a— b.

Figure 6.25. With equation (2), the Pythagorean theorem
gives Rin terms of rand k.




Still Hardev"ﬁemple Geometry Problems 215

Figure 6.26. The Pythagorean theorem can now be used
on the two right triangles in the center.

The strategy is now to eliminate Rin favor of rand k. Applying the
Pythagorean theorem directly to figure 6.26 gives

a ? a\’
(R+1)? +(§— s) =(R-1)? +[s+§j ,
or, after simplifying,
2Rr=as. (7)
The problem is almost solved. We now replace R on the left of

equation (7) by equation (6) and as on the right by the expressions in
equations (3) and (4) to get

227(k—r)7_4r(k—r) r(k—r) k=2r
k k=2r \ k—2r 2 )

which gives the cubic

B — 49k — 2k + 89% = (K2 — 202) (k— 47) = 0.
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From any of the figures, the relevant root is k= 4r, and thus we have
the final result

Problem 4 )

This solution is by Omura Kazuhide (1824-1891), from his 1841
book Sanpo Tenzan Tebikigusa, or Algebraic Methods in Geometry.

First we draw figure 6.27. The radii of circles O, 0,, 0,, and O, are
7, 1), 7y, and 7, respectively. The basic approach will be to calculate a
number of relevant areas as functions of the four radii, then eliminate
the areas to get rin terms of r, Ty, and r,.

To do this, start by the same method employed in many of this book’s
problems (e.g., chapter 3, problem 13) to find that the lengths are

GD = 2\nry; D'E’=2\nr; EF =2\nr. (1)

By using the equality of tangents from vertices A, B, and C to their
respective inscribed circles, one also sees that E'C’ = EA’, GB’ = FA/, etc.
With these one can establish

GD+ D'E’' - EF=2BD; DE’'+ EF- GD=2CE’; GD+ EF- D’E'=2GB’. (2)

The area of the quadrilaterals formed by the auxiliary lines can
easily be calculated by the trapezoid formula and equation (1):

GO,0,D = %(1’1 +73)GD = (1, + 15)\"i13,
D'0,0,E" = %(1’1 +75)D'E" = (1, + 1)\ 175,

1
EO,O4F = 5(7’2 + 1) EF = (1 + 13)4/ 7975 - (3)

Figure 6.27. Mark the important points and
draw the auxiliary lines shown.
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Figure 6.28. The central figure in the triangle
cut out, unfolded, and joined together such
that the end points FFand G match, as well as
intermediate points DD’ and EL". The points
H_ are the endpoints (“perpendicular feet”) of
the radii of each circle, e.g., GO,, extended to
the height of O.

We now, hopefully, simplify by drawing a second diagram, figure
6.28, which represents the central figure (EFO,GDO,D’E’O,) cut out
from the triangle and unfolded. (In other words, this is the figure that
remains after cutting away the three quadrilaterals at the vertices of
the triangle.) The points H,, . . ., H, are the points at which extensions
of the radii GO, etc. reach the height O

From figure 6.28 and equations (1) and (2) we see that the areas of
the missing triangles are

1 , 1

AO;H\0 = E(r— 13)GB’ = E(r —13) (175 +4/7273 —4/7172),
1 , 1

AOO\H, = E(r -1n)B’D = 5(7 -n) (YN +1/1’172 —417273),

1 , 1
AO,H,0 = §(r—nz)CE = 5(7— 7o) (1T +4/Tol3 —+/1i73). (4)

It is now convenient to employ Heron’s formula, which gives the area
of a triangle in terms of its sides and semiperimeter®:

Area, =\/s(s—a)(s—b)(s—c) =i\/(a+b+c)(a+b—c)(a+c—b)(b+c—a).

Focusing on the central triangle 0,0,0,, we have a=r + r,, b=1r + 1,
¢=7,+ 1, and get for the area

AO,0,0; = \/(r] + 1%+ 1) (K1) = AOO,0, + AOO, 0y + AOO,O;,  (5)
where the last three triangles are shown on figure 6.28.

Of course, the area of the big rectangle GH, H,Fin figure 6.28 is just
rGF, which with the help of equation (1) is

GH H,F = 2r(\[ 575 + /17 + 1/ %73). (6)

®See problem 1, this chapter. Heron’s formula is discussed in most elementary geometry
texts and on many websites.
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From equations (3)—(5) we now have all the component parts of the
rectangle’s area. We simply add them all up and equate them to the
area from equation (6):

2r(yfnm +nm +frry) = 0+ 1, + 1) ()
+(r = 1) (Yriry + oy = nmy)
+(r =) (i +ns =)
+ (r—1y) (Yrm +frery —lnm)
+ (n +rg)ﬁ+(rl+r2) 1t + (% +rg)@.

Canceling many terms leaves

r(yfnr +4/nrs + 4/721"3) = \/(71 + 175 +13) (nh13)
+ N[Nl + 1o NTy + 754/ N7,

or, finally,

4171721"3 [\/71+4/1"2 + 1y +A/(n + 1 +y)]
r =
NNTe + AT + 1ol
2\nrory

- \/Z+\/g+\/g—\/(rl+r2+rg)'

We will speak more about this problem in chapter 8.

Problem 5
The solution to this problem is not written on the tablet, but math-

ematician Yoshida Tameyuki (chapter 3) gave a solution in his note-
book Chashit Shinpeki, or Sangaku from the Choshit Region.

Yoshida set the following three lemmas without proof. If 2z and 2b
are the major and minor axes of the ellipse, respectively, then

(1) r=b*/a.
(2) r, =31 —4r?/a.
(3) p* =022 —1r3)/(a® - b?),

where pis the distance in y from the center of the internal circle r, to
the point of tangency with the external circle 7, (see figure 6.31 below).
To prove lemma 1, refer to figures 6.29 and 6.30. An ellipse is to be
regarded as the section of a right circular cylinder cut by a plane. The
minor axis 26 is simply the diameter of the cylinder. A circle inscribed
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Figure 6.29. A plane P cuts a right circular
cylinder, producing an ellipse with major
axis AB. The center of the ellipse is O. A
sphere with center Sintersects the plane
containing the ellipse, producing a circle
with center C. The points of tangency

between the circle and the ellipse are where
the “equator” of the sphere (dashed circle)
intersects the ellipse.

2b

D Figure 6.30. Side view of plane P cutting cylinder. The segment ABis
the major axis of ellipse = 2a. The diameter of the cylinder is the
minor axis of the ellipse = 2b.
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within the ellipse is the intersection of a sphere of radius 6 with the
plane containing the ellipse. Figure 6.30 represents a side view of
plane AB slicing the cylinder. Therefore AB= 2a, BD=2b and

AD =2V a? — 2.

Now, if Ois the center of the ellipse, Sis the center of the sphere,
and Cis the center of the projected circle with diameter FG, we see
that triangles ABD and SCO are similar, and so OC= SC- AD/BD. But
since 4 is the radius of sphere S, SC= v 52 — r2. Hence, the distance
between the center of the ellipse O and the center of the circle Cis

2 _ )2 2 _ 42
oc e b;(b )

As circle Cmoves towards one end of the ellipse and shrinks, the maxi-

o

mum distance it can attain while still being inscribed in the ellipse is
OC=a-r.
Inserting this into equation (1) gives, after squaring both sides,
(ar—b*) =0, or
»2

: (2)
a

r

This is the radius of curvature at one end of the ellipse.® In our case
r=r, and Lemma I is proven.

To prove lemma 2, equation (1) shows that, if two inscribed circles
of radii r; and r, are touching each other externally, then for r, > r, the
distance between the centers is

V(@ =) (0 =) (@ =) (B2 -1
b b '

(3)

ntH=

From equation (2) let 4% = ar, in this expression. A page or so of
straightforward algebra yields
(r + 1) (4r? + ar, — 3an) = 0.
Because we require 7, > 0, we get Yoshida’s lemma 2:
47}

v =31 — —L.
a

To prove lemma 3, note from figure 6.31 that CY= p and from figure
6.32 that triangles SCY and ABD are similar. Thus, p/SC= BD/AD.

5The radius of curvature of an arbitrary figure is the radius of a circle that “matches” (is

tangent to and has same curvature as) the figure at the point in question.
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O

s 3

Figure 6.31. Similar triangles shows that the two segments indicated by the arrows
are equal. The point Y has the same y-coordinate as the point of tangency

between the circles r, and the ellipse.

Figure 6.32. Point Ylies on the “equatorial plane” of the sphere
and therefore is connected to S by a horizontal line (see figure

v 6.29). This means that triangles SCYand ABD are similar.

221
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From above we have SC= 02 — 1%, AD = 24/ a® — b2 and BD = 2b. With

r=r, we immediately get Yoshida’s lemma 3:

_B-13)
a2 — b2

We can now proceed to Yoshida’s original solution to the problem:

P (4)

Into equation (4) substitute b* = ar, from lemma 1 and r, in terms of
r, from lemma 2. A bit of algebra gives

p=aldn=a )

a
From figure 6.31 we see that 2p = 2r, + r, — r,, or p=r,. Equation (5)
then gives

)
4r;

a= (6)

ntn

Lemma 2 then immediately yields r, = 2r, — r,. By inspection of
figure 6.31 we also have a=r, + r, + r,, and so a = 3r,. Inserting this
into equation (6) gives the final result

r =37,
Notice that nowhere in this solution did we use the standard equation
for an ellipse!

Problem 6
From figure 6.6, we see that AC= a— b, where 2a and 20 are the

major and minor axes of the ellipse. Also, if M is the midpoint of BD,
then since AC = BD, we have BD=2BM = a — b, and so the side of the
square is «/§BM = «/§(a —b)/2. However, not any a and b will do for the
kite problem.

To determine the relationship between a and b for the kite, we
perform what geometers term an affine transformation on ellipse E,.

That is, as discussed more fully in the solution to problem 19, the
change of variables u= xand v = (a/b)y transforms the ellipse x*/a*+
y?/b* =1 into the circle u? + v* = a*. Figure 6.33 shows that this transfor-
mation has the effect of leaving the x-coordinates (and the major axis)
unchanged, but stretching the y-coordinates (and hence the minor axis)
by the factor (a/b). As we will see in the next problem, such a transfor-
mation can also be viewed as a projection of an ellipse onto a circle, very
much in the spirit of what was done in the solution to problem 5.



Still Hardev"ﬁemple Qeometry Problems 223

Figure 6.33. The ellipse E, has been stretched in the y-direction
to a circle. The length OM remains unchanged = (a + b)/2 but
the length BM has become B'M= [(a— b)/2](a/b).

In the case of the kite, this transformation therefore leaves
OM = (a+ b)/2 invariant, since it is a distance along the x-axis. On the
other hand BM = (a— b)/2, being a vertical segment, is stretched into a
chord B’M of length [(a— b)/2](a/b). Applying the Pythagorean
theorem to the triangle OMB’ in figure 6.33 gives

2 2
a? = OM?2 + a—by)fa
2 b)’

which results in the fourth-order equation

at—2a*b— 2a%0% + 2ab® + b* = 0.
This expression in turn factors into
(a—b)(b+ a)(a*—2ab—b?) =0,
which for a> b has the solution q— b = /25 We already know from

above that the side of the square is V2(a— 1)/2 and so we have simply
that the side of the square in the kite is

V2(a=b) _ 242

2 2

the minor axis. One must be amazed.

b,

Problem 7
We follow much the same procedure as in the previous problem. As

discussed in problem 5 (in particular figure 6.29), traditional Japanese
geometers viewed an ellipse as a section cut from a right circular
cylinder. Conversely, they could view a circle as the projection of an
ellipse onto the top of a cylinder. The affine transformation mentioned
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Figure 6.34. Project the triangle in the ellipse into a triangle in the

circle; it becomes equilateral. \_/

in problem 19 can be seen in the same way, not only as a stretching or
shrinking of an axis of the ellipse, but as the projection of an ellipse
onto the top of a cylinder. Thus, as shown in figure 6.34, we can
imagine triangle ABC to be embedded in an ellipse within a cylinder.
Projecting it onto the top of the cylinder has the effect of shrinking the
major axis of the ellipse by an amount 4/a, while leaving the minor
axis constant. The result is AA'B'C’. Because the areas S, S,, S, were
assumed equal, AA'B’C’ must be equilateral. Furthermore, the diam-
eter of the circle circumscribing this triangle is the minor axis of the
ellipse, and so area AA’B'C’" = (3/4)/302. Triangle ABCis merely
AA’B'C’ stretched in one direction; consequently, the area is

%(%«@W).

Problem 8
We outline a traditional solution from Aida Yasuaki’s 1810 book

Sanpo Tenshoho Shinan, or Guide Book to Algebra and Geometry. The
problem is not too difficult if one understands the solution to prob-
lem 5. We follow the method used to prove Yoshida’s lemma 2, in
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particular equation (3). Squaring out that equation leads to a qua-

dratic in 7;:

(@=2090n 4 o g (@28

2 _
rp—2 "

a? a
In a way similar to several other problems encountered in this book

(see in particular chapter 7, problem 1, and problem 12 in this

chapter), one root of this quadratic is the one we are looking for

(in this case, the smaller root), while the larger root turns out to be r,.

(Convince yourself of this by doing the first few cases explicitly.) Since

for any quadratic equation ax? + bx + ¢= 0, the sum of the roots

x, + x_=—b/a, we get from above

2 _9p2
’i+73=2—(a 22b )72.
a
This relationship holds for any triplet of circles, and so one has the
recursion relationship

=kr

Tn +r n+l’

n+2

where k= 2(a* — 20%)r,/a*. By tediously writing out the radii of all ten
circles in terms of r, and 7,, one easily establishes the desired relation-
ship r.(r; + r,) = r,(r, + r,;). On the tablet, an example was written:
r, =18, r,=32, r,=30, and r,,=13.

For a further challenge, one can place smaller circles in the inter-
stices of the larger ones and find the relationships among those.

Problem 9
We give a solution in the traditional spirit:

Let the radius of circle O = r. Referring to figure 6.35, we have by the
law of cosines
(r—a)?=a*+ p*—2ap cos o,
(r—0)?2="0%+ p*— 2bp cos f,

where p= OP. However, o and f3 are supplementary angles, and so
cos o= — cos f3. Thus,
(T_a)Q_aQ_pQ_'— (r—b2 -2 - p? o
2ap 2bp '

Putting this over a common denominator shows that

1 1 4r

a b r2—p?
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Figure 6.35. Draw the auxiliary lines shown and mark angles
oand .

But rand p for this problem are fixed, so the right-hand side of this
equation is a constant. The analysis must also hold for circles ¢and d.
Therefore

1 1 1 1

a b ¢ d
This simple exercise gives a good idea of why in so many problems

solvable by inversion (for example, problem 10) give results of the form
“sum of reciprocal radii = constant.”

Problem 10
We only need to consider the one-half of the diagram. For the

moment, assume that the centers of circles 7, Ty, and r, are colinear.

Then, figure 6.36 shows that r= ¢+ 2r, = t+ 2r, + 2r,, or

T

]=T2+1’3.

Figure 6.36. Choose k to invert 7, INto 7, and vice versa.
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similar triangles gives

T3 Ty
L+r  L+2n 41

or eliminating ¢ by the previous expression,

3 %

r=2n-1n r—5n

Consequently,
1 5
1= — (=272 + ). (1)
r

Since ris assumed constant, we can take the derivative of Ty with
respect to r, and set it to zero to immediately get r, = r/4 and r, = 7/8.
Hence, 2r, + 2r, = 2r, + 47, = 1, as stated.

This can also be done without calculus by rewriting equation (1) as

Notice that the first term is negative definite. Thus r, is maximized
when Ty = r/4, as before.

We need to establish that O, the center of circle r, and the center
of circle r, are colinear. Here we make the first use of the inversion
technique (see chapter 10). Theorem M, which was stated without
proof, says that a circle, its inverse, and the circle of inversion all have
centers that are colinear. Thus, choosing O as the center of inversion,
if we can invert T, into r, and vice versa, we have shown that the two
circles are colinear with O, and the rest of the proof follows.

To do this, notice that if in figure 6.36 we invert circle ¢ into circle 7,
and vice versa, then circle r, must invert into itself in order to keep the
points of tangency A and Binvariant. Similarly, r, and r, are tangent to
r, and to the line OF at the points Cand D. In order that all points of
tangency are preserved, in particular that Cinverts into D and vice
versa, then r, must invert into r,, and the reverse. To do this, merely

2
choose the radius of inversion % such that &% = 7¢.

Problem 11
No solution is written on the tablet. We give a modern one based on

the technique of inversion; with this the problem is easy, without it

almost impossible. Readers not familiar with inversion should study
chapter 10 first, in particular Theorems N and P.
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Figure 6.37. The inverse of figure 6.11.

Theorem N tells us that, by a proper choice of the center of inver-
sion we can invert any two nonintersecting circles into a pair of concen-
tric circles. Thus, consistent with the discussion of Theorem N, choose
T outside Rin figure 6.11 and on the line segment joining the centers
of rand R. Theorem N then tells us that r and R will be mapped into
the concentric circles © and R/, as shown in figure 6.37. Because, by
Theorem K, points of tangency are preserved under inversion, a’, b’, ¢,
and d’ must all be tangent to 1 as shown, and hence all have the same
radius! In that case their centers form a square. (We leave it as an
exercise to construct the details of the figure.) From Theorem P, it
immediately follows that the relation between the radii of the original
circles is

1

11,1
a b ¢ d

Problem 12
Here, we give a traditional solution by Yoshida Tameyuki from his
unpublished and undated manuscript “Solutions to Shinpek: Sanpo
Problems.”
To solve Hotta’s problem, Yoshida repeatedly employs a theorem
known in the West as the “Descartes circle theorem” (DCT). We
discuss and prove it in chapter 8. For now we just state the result:

If three circles of radii r,, r,, and r, touch each other, touch a small

circle of radius ¢ externally and touch a circle of radius rinternally, as
shown in figure 6.38, then the following relationships hold:
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Figure 6.38. The Descartes circle theorem gives
the relationships among the circles.

2
1 1 1 1 1 1 1 1
2| S+ +5+— =(—+—+———]. (2)
1’1 1’2 1’3 r n 15} 13 r

Yoshida’s plan is quite simple. He uses the DCT on successive triplets of

circles to inductively establish a recursion relationship for the r and ¢ .
To begin, let a=1/rand p, =1/r,. Then examine each r_ in turn:

[r]:7,=1/2,0r p, =2a.
[r,]: Use DCT for {r, r,, r,, r} in figure 6.12 to get

)
1 1 1 1 1 1 1 1
2=+ —+—s+—|=|—+—+———|,
r? 2 rg r2 non o

2(4a? +4a + pi + a*) = 2a+2a+ p, — a).

or

Solving for p, gives p, = 3a or r,=1/3.
[r,]: Use DCT for {r,, Ty, 7y, 1} O get

1 1 1 1 1 1 1 1)
2| S+t = r—+F———|,
7‘1 7‘2 7'3 r 1’1 72 73 r

or, from the previous steps,
24a®+9a + pi+ a®) = Qa+3a+ py— a).
Hence, p, = 6a or r, = 1/6. [This is the larger root of the quadratic.
The small root is p, = 2a= p,, which we discard.]
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[r,] Use the DCT for {r, r,, 7,, 1} to get

| R L

1 1 1 1 1 1 1 1)
2| Sttt =l t—+t———],
Tl 7"3 T4 r Tl 7:% 7'4 r

or from the previous,
82a® +2p3 = (Ta+ p,)2.
Thus p, = 1laor r, = 1/11. [The small root is p, = p,, which we dis-

card.]

[r,] Use the DCT {r|, r , r

> THin the general case to get

2(p1 +p721+pn+1+ aQ) = (pl +pn+pn+1 _a)2
or

=2(a+ p,) puy +10a +2p2 — (a+ p,)? =

n+1

Regarding this as a quadratic in x=p _,, the two solutions are x, = p_,

and x_=p_,. [See the remarks above. Also compare Yoshida’s solution
for chapter 7, problem 1.] Then x, +x =p . +p ,=2(a+p,),or

pn+l - 2pn+ pn—l = 2@,
which is the desired recursion relationship.

We thus deduce the general solution

b, =2a,
po=3a=2a+ a,
ps=06a=2a+4a,
p,=1la=2a+9a,
ps=18a=2a+ 16q,

or p =2a+ (n—1)%a, which yields
N
r=—.
2+ (n—1)2

To find ¢ , use the DCT for {r r}. Then, with ¢ =1/t

n’ n+l’ n’ l
2(pn+pn+1+qn+p1) (pn+pn+l+qn+pl)2‘
Letting p = 2a+ (n—1)%a from above, we get the quadratic in ¢,
@ —-2a@2n®*-2n+7)q, — (4n® —4n+15)a® = {q, — 4n®> —4n+15)d {q, + a

By inspection, either ¢ = (4n* —4n+15)a={(2n—1)? + 14}a, or
q,=—a. We discard the latter solution to get the final result

=0.
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,
{ =—
" 2n-1)2+14

n:l[ =14 +1}
21\,

which was written on the tablet.
In chapter 10 we obtain this result by the method of inversion.

or

Problem 13
We follow Hiroe Nagasada’s original 1833 solution from his book

Zoku Shinpeki Sanpo Kigen, Solutions to the Zokw Shinpeki Sanpo. It is from
this solution that we have taken the answer to problem 5 in Yamagu-
chi’s diary, chapter 7.

From figure 6.39,

x
V3
p*+ 02 = (R-0)?,

b (1)

P55

The last two equations imply that x2/12 + bx/\3 + b2 = R2 —2Rb, or

R= +2a,

—12R2 + 24bR+ x2 + 43 bx + 1202 = 0. (2)

Also from the figure, ¢= (R— a) (\/5/2) — b [consider the segment
containing ¢ that extends from the center of a to segment p] and

Figure 6.39. Ris the radius of the outer circle, x the side of
the equilateral triangle, b and «a the radii of the large and
small circles, respectively. Further, pis the perpendicular
distance from the center of R to the indicated horizontal
radius of b, whereas ¢is the perpendicular distance from
the center of «a to the indicated vertical radius of b.
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¢+ (b—a/2)?= (a+ b)% Eliminating a with the first of equations (1)

yields
V3 xR— 23 Rb— 6 Rb+2(\/3 — 1) bx + 462 = 0, (3)
To eliminate %, subtract equation (2) from 3 x [equation (3)] to
get
12R? — 6v/3Rb — 42Rb + 3+/3xR + 2+/3bx — 6bx — x2 = 0,
which yields

12R? + 33 xR — x2

b= :
6(7+V3)R+2(3 - /3)x

Substitute this expression into equation (2) to get a fourth-degree

equation for x:

(8,640 +4,320/3)R* + (1,296 —6,480~/3)R3x — (1,116 + 1,584 /8) R2x2
— (482 — 360 \/8) Rx® + (4843 — 84)x* =0. (4)
[The last step is rather difficult. Substituting b into equation (2)
initially gives
(—12R2 + x2) [3(7 + V3)R + (3 — V/3)x]2
+(6 R +/3x) (12R2 + 3v3xR — x2) [6(7 + vV3)R + 2(3 — V/3)x]
+3[12R2 + 3v/3xR — x2]2 = 0.

To save hours of tedious work, the authors cheated and used scien-
tific software packages to put this equation into Hiroe’s form. The
problem is now “in principle” solved: all we need to do is solve equa-
tion (4) for x. We return to Hiroe’s calculation, and show how he
did it.]

Divide (4) by -3 and set 2R = d to get

(28 —16~/3)x* + (72 — 60 +/3)dx® + (93 + 132+/3)d2x2
+(270~/3 =54 )d3x — (180 +90+/8)d* =0. (5)

Next factor this equation. [The method by which Hiroe does this is
peculiar to traditional Japanese mathematics and so we examine it in
detail.] First rewrite equation (5) as

(28 — 16+/8)x? + (72 — 60 /3 )dx® + (669 +132v/8)d2x2 — (306 \/3 + 54 )d3x
+(252 — 90+/3)d* = (576 x2 —2 x 288 X /3xd + 432d%)d 2 (6)



Still Harder Temple Geometry Problems 233

Factor all the coefficients as follows:

(16— 2 x 843 + 4 x 3)x*
F(-2X9x4-2x12X /8 x4 +4 X 9IX 3 +4 x 3 x 12)dx?
+(-2x4X3X3+2X3x2x3+2x4x15

—9X V3 X2X15+81+2x12x 9x /3 + 3 x 144)d2x2
+(2><9><\E><3+2><3><12><3—2><9x12—2x\@x12x15)d3x
+(27 — 2x 45 x /3 +225)d* = (24x — 12v/3d)2d?.

This can be recognized as a perfect square”:

[(4—28)x2 — (1243 + 9)dx + (15 — 3v3)d2]2 = (24x — 12/3d)2d2,
giving
(4 — 24/3)x2 — (33 +124/3)dx + (15 + 9v/3)d2 = 0.
Multiply this equation by (4 + 24/3) to find

4x2 — (204 +1144/8) dx + (114 + 664/3) a2 = 0,

or

x= ﬂwQ + 5743 = (102 + 5743)2 — 4(114 + 66«@)}1

_ g[102+57«@—\/19,695+11,364«@} %)

If d=103.5, then x=59.20004939.8 That complete Hiroe’s proof.
The above result and this example were written on the tablet.

For Yamaguchi’s diary problem, chapter 7, problem 5, we want the radius
a. From equation (1) above,

X

R

R=2a+

or a =0.169766527R.

"To see this admittedly requires some vision, but if Hiroe is searching for a perfect
square of the form (ax*+ bdx+ ¢d)?, he knows that expanding this expression gives a’x* +
2bdx® + (2ac+ b?) d®x* + 2bcd®x + ¢>d*. This means that the coefficient of the x* term is @?, and
we immediately see from his “list” that @ = 4 —2+/3. Similarly for ¢. He can then search
among the x? terms for a coefficient of the form (2ac+ %) &2, etc.

8Here is a case where the traditional mathematician picked the parameters of the
problem, d, to simplify computation of the answer. Hiroe calculates (102 + 573 —

\/19, 695 + 11, 364\/%) = 0.571981153 = 592/1,035. Thus choosing d=103.5 means the
answer is merely 592 . . . /10.
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Problem 14
This solution is from Yoshida’s unpublished manuscript Solutions to

Sanpo Kisho Problems.

The centers of ten appropriately chosen small balls form a regular
decagon, the center of which is the center of the big ball. (See figures
6.40 and 6.41.) Then sinl18° = 7/(R+ r), which implies R = \/gr.

(For sin18°, see chapter 4, problem 32.)

Figure 6.40. The heavy line traces out a regular decagon.

%

Figure 6.41. The angle between the centers of the two
small balls is 36°.

Problem 15
We follow Yoshida’s solution, quoted from his manuscript, Solutions

to Shinpeki Sanpo. It may help to refer to chapter 4, problem 39.
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LN

Figure 6.42. Note that angle BCD = 108° and angle CDB = 36°.

Figure 6.43. Cutting a cross section out of the dodecahedron
as shown gives a large pentagon. Note that angle ABD = 108°
and angle BDA = 36°.

As shown in figure 6.42, connecting the centers of the small balls
gives a regular dodecahedron with twelve pentagonal faces each of side
2r. [Note that /BD = sin 18°, which immediately implies BD = (\/g +1)r.]

Now cut a slice out of the dodecahedron as shown in figure 6.43.
The cross section forms another pentagon with sides ABD. . . . The law
of sines gives

in 108°
AD =" Bp= (3+b)r.
sin 36
Figure 6.43 also shows that (AE)? = (ED)? + (AD)?, where

AE=2(R+1),AD = (3 ++5)r, and ED = 2r. Solving the resulting
quadratic for R gives the desired result

R= [,/%(ﬁm) —1}.

Kimura Sadamasa, who proposed the problem, gave the approxima-
tion R =(1,862/1,033)r.
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Problem 16
We give a modern solution by the method of inversion, one quite

similar to that employed to solve problems 10 and 11 above. Once you
have gone through those solutions, you will find this one quite simple.
Invert figure 6.16 with respect to a point 7 chosen to be the contact

point between sphere a and the outer sphere R. Because spheres Rand
a pass through the center of inversion 7; they must be mapped into two
parallel planes R’ and . Because the four spheres r, . . ., r, are
tangent to both sphere Rand «a they must be inverted into a loop of
spheres of equal radii ' between planes R" and «’. Further, sphere b,
which does not pass through the center of inversion, must be mapped
into another sphere 4. Because b is tangent to T - . .5 7y, its inverse b
sits in the middle of the spheres »',, ..., ;. Thus the centers of ¥/, . . .,
7', form a square, and by Theorem P in chapter 10, we immediately
have the result

1 1 1 1

+ +

n B h N

/ . Problem 17
4“ The easy way to solve this problem is by the method of inversion.

c’ h Frederick Soddy (1877-1956), a physical chemist who with Rutherford
’ discovered the transmutation of the elements, did not do it the easy
” way. Neither did Yazawa Hiroatsu, who posted the problem in 1822, 124
- years before Soddy. We can be sure of this because traditional Japanese
geometers did not know of inversion, which was only invented in the
West around 1825. We here give a traditional solution from the second
volume of Sanpo Tenzan Tebikigusa (1841), or Algebraic Methods in Geom-
etry, by Omura Kazuhide (1824-1891).

In Yoshida Tameyuki’s solution to Hotta’s problem (problem 12)
we made use of the Japanese version of the Descartes circle theorem,
which gave the relationship between a chain of three circles that
touched a fourth circle. By enormous labor traditional Japanese
geometers also obtained the three-dimensional version of the
theorem:

If five spheres of radii r}, r,, 75, 7,, and r, touch each other, then

(-]

i=1 i
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In this problem, let o= 1/a, B=1/b, y=1/7, and t,=1/r. Then
a2+ P2+y?+3+8)=(a+ -7+ +1)% (1)

As in the Descartes circle theorem, the term containing r comes in
with a minus sign because sphere rinscribes the other spheres and so
is taken to have negative curvature.

Next solve for , in terms of @, B, % and ¢,. This gives a quadratic

B—(a+PB-y+t)l+(@>+B2+y>+83)—af—at,— B, + Py + v, +ay =0,

or

ly Z%[(a+ﬁ+tl—7)
iJ«x+ﬁ+¢l—yﬁ—uﬂa2+ﬁ2+t%+y2—aﬁ—aq—¢%y+ay+ﬁy+qyﬂ

= 3@+ B+t -yt 120 + ot + p - ay — By —y) -8+ Bo -~ 77|
(2)

Notice, however, that equation (1) is absolutely symmetric in the

variables ¢, and {,. Thus, by swapping the labels #, and ,, equation (2)

also holds as a solution for ¢,. Now replace ¢, by {,, and ¢, by ¢, in

equation (2). We then see that one solution of the quadratic is the

value of ¢, we are looking for, while the other root is ¢, a situation that

is the same as in problem 12 above and problem 1 of chapter 7. Since

x, + x_=—b/a for any quadratic equation ax* + bx + ¢= 0, we obtain
ty+t, =0+ B+1t,—7yor

ly=tly—tl + 0+ B=y=1,— 1 +k,
where k= o+ B— 7.
Following the same prescription for the next spheres, we get

Ly=1ly—ly+ k=—1+2k,
to=1,—ty+ k=—1,+ 2k,
lg=tl,—t,+k=—1t,+1 +k (3)

and, remarkably,
L=t~ t,+k=1.

We have therefore proven that six—and only six—spheres can be
fitted inside the outer sphere in the given configuration. Hence the
name “hexlet theorem.” By the method of inversion it is quite simple to
get this result. Invert figure 6.17 with respect to, say, the point of
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contact between spheres b and . As in problem 16, these spheres must
invert into two parallel planes. Because sphere ais tangent to both b
and 7, it must invert into a ball between the two planes and touching
them. Because the remaining spheres are all tangent to a, b, and r, they
can map only into a ring surrounding sphere &. Thus we have n
spheres of equal radii surrounding another sphere of the same radius.
A moment’s reflection shows that the only way this can be accom-
plished is if there are six balls surrounding a seventh, just as you can
place only six ping-pong balls around a given one.’

The author of our solution, Omura, also says that that answer n=6
is trivial, since if we let both rand a go to <, we have two parallel
planes, with ball 4 in between, implying that only six other balls of the
same radius can surround it.

It also follows immediately from equations (3) that

Problem 18

We discuss this problem in chapter 8.

Problem 19

The original solution is not written on the tablet, but a similar
traditional solution, which required numerical calculation by the
soroban, is found in Uchida Kyumei’s Sanpo Kyusek: Tsu-ko.

As discussed in the solution to problem 5, traditional Japanese
mathematicians regarded an ellipse as an oblique section cut from a
right circular cylinder, rather than as a conic section. This in turn led
traditional mathematicians to view an ellipse as a circle that was
stretched or shrunk in one direction. That is, in basic geometry we
learn that any point P on an ellipse centered at the origin O must
satisfy the equation

X_Q + y_? = 1’
a*> b

where x and yare the usual x and y coordinates of point P.

Stanley Ogilvy devotes a chapter to the hexlet in Excursions in Geometry (Dover, New

York, 1990).
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y,v

Q(u,v)

P(x,y

Figure 6.44. A point Q(u, v) on a circle can be trans-
formed into a point P(x, y) on an ellipse by making the
transformation x = wand y = (b/a)v.

If, on the other hand, we define two new variables u and v such that

u=xand V= (a/b)y, then this equation becomes simply
u? + 0> =a?,

which we recognize as the equation of a circle of radius @ centered on
the origin. In this case, we can regard the ellipse as a circle that has
been shrunk by an amount 4/a in the y direction. As mentioned in
problem 6, we have just made what modern mathematicians call an
affine transformation. The idea of shrinking a circle along one axis
into an ellipse is illustrated in figure 6.44 and is the central idea
employed in the traditional solution to this problem.

We first apply the same method that was used to find the area
element in problems 22 and 23 of chapter 5. Focusing attention on the
small triangle at the top of figure 6.45, in which we consider the short

y\v

X,u

Figure 6.45. For small enough triangles, the segments
Al and Al can be considered straight lines.




240

Figure 6.46. This figure represents a head-on view of one of the Z(x): I
cylinder sectors. Point T'is where the two sectors touch in figure :
6.19, and is assumed to be located at x= 0. D is the diameter of
the cylinder; dis the depth of the sector, which is the limit of
integration. At a given x, the full height of AABCis z(x). Similar /
triangles shows that BC= D — 2x. The area element for integra- /

le\apfev‘ 6

segment Al’ to be the hypotenuse of the right triangle, then similar
triangles gives
Av_x

Ax v

b

or, with the change of variable v= (a/b)y,

Av  bx

A ay
Also, since Av is merely the difference in two values of v, Av = (a/b)
Ay and so

Ay  b’x

Ax a’y

As is in ordinary calculus, The Pythagorean theorem is employed to
find the line element Al:

2
Al = J(Ax)? + (Ay)? = 1+(%) Ax
X

o

where the last equality follows because a* = V? + x> = (a/b)%y* + x* in
figure 6.44.

The area element can be found by examining figure 6.46, which gives
a head-on view of one of the cylinder sectors. The area element is As=
z(x)Al, where z(x) is the height of the cylinder cut out on the elliptical
surface at a point x. The Pythagorean theorem applied to the figure gives

z(x) = \/D2 —(D-2x)% = Qx/Dx - x2,

tion is thus z(x)Al(x), where Al(x) is the line element along the /
surface of the elliptical cylinder. B C
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where Dis the diameter of one of the cylinders, and thus, from equa-
tion (1),
b2x2
As = z(x)Al =2VDx —x? |1+ ————Ax
a2(a? — x?)

The full area S= 28, is therefore given by

2 _ 12 4
5 = 2a[ 2Dx -2 =L@ —ey/atle )

Va2 - x2

The problem, as is traditionally said in mathematics, has been

“reduced to quadratures”—it has been formally solved assuming one
can do the integral. Unfortunately, this integral appears to have no
analytic solution and so must be tackled numerically. To do so, it is
convenient to change the limits of integration to [0, 1], which can be
easily accomplished by the change of variable x= d - ¢. Then,

1-(1-562%2/a2)(d2/a?)t2
S = 4d\Dd j Ji—(a/Dy \/ s (3)

It is possible to evaluate the integral by any number of numerical

techniques. Before one does that, however, we guess that the first
factor in equation (2) or (3) is the important one, because it just
assumes the surface of the elliptic cylinder is flat and thus gives the
area of the sectors themselves. Consequently, we expect

S= 4JOdVDx — x2dx,

the stated answer. Indeed, assuming, for example, D=1, b/a = 0.5,
d/a=0.25, and d/D=0.25, we find with a standard software package that
the integral of the first term alone is 0.307 and the complete integral is
0.308.1

How did traditional Japanese mathematicians evaluate such inte-
grals? Briefly, they used numerical tables based on infinite series.
Such tables were known as “Enri tables,” which we discuss in more
detail in chapter 9. There we give a few more gory details of this
problem.

10Readers familiar with series expansions can expand the second square root in equa-
tion (3) and easily convince themselves that, as long as d/a < 0.15, the error in ignoring this
factor will always be less than about 1%.



Plate 7.1. “Oiwake” by the ukiyo-¢ artist Keisei Eisen (1790-1848). This print is from
the series “Sixty-Nine Stations of Kisokaido,” which Eisen produced with Utagawa
Hiroshige between 1834 and 1842. Depicted here are packhorses and drivers near
Oiwake, below Mt. Asama, which mathematician Yamaguchi climbed during his
travels (see diary entry for 28 July). (Nakasendo Hiroshige Bijutsukan.)
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The Travel Diary of
Mathematician Yamaguchi

KC\V\ZCIV\

Mathematics clevelopecl from the
relations of circles and squares.
Mathematics is one of the six educa-
Hons: manners, music, arc'r\evy, Vicling,
writing and mathematics. These
educations are pecm“ar to human
beings and are not necessary fov*
animals. The teacher Takeda has
been s’rmclyiy\g mathematics since he
was young. Jn this shrine, his dis-
ciples ask Giod fov* progress in their
mathematical abi“’ry and dedicate a
sangakm.

—pweface to a samgakm L\ung in

1815 by Kakuyu, a disciple of

Takeda

Due to the policy of sakoku, Japan experienced no major external con-
flicts for nearly three hundred years. Although the country was periodi-
cally wracked by peasant uprisings, the Edo period was by world standards
peaceful, and travel extremely popular. People toured widely, taking sight-
seeing trips, or making pilgrimages to various shrines and temples. Usually
the Japanese traveled on foot, seldom on horseback, and, as in the West,
put up at inns or rested with friends, sometimes at the temples themselves.
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The poet Matsuo Basho was almost as famous for his wanderings as his
haiku, and we know from his books and poems that he stayed with many of
his friends while on his journeys.

Geometers did not cede place to poets. A number of nineteenth-century
mathematicians, including Hod6ji Zen (1820-1868), and Sakuma Yoken
(1819-1896) took “sangaku pilgrimages” to teach mathematics, encourage
amateurs and lovers of geometry, and to hang sangaku in temples around
the country. Among these itinerants was Yamaguchi Kanzan. The known
biography of Yamaguchi is this: He was born about 1781 in Suibara of Ni-
igata province, studied mathematics in Edo at the school of Hasegawa Hi-
roshi, and died in 1850. In contrast to how little we know about Yamaguchi
himself, however, much of our knowledge of sangaku comes from a diary he
kept of six journeys undertaken between 1817 and 1828.

Yamaguchi’s travel diary is substantial, comprising about seven hundred
pages all told. In it he describes the sights, speaks of meetings with friends
and other mathematicians, and also records problems from eighty-seven
sangaku, only two of which survive to the present. The fate of the diary is as
obscure as that of its author. Apparently, Yamaguchi attempted to publish
part of it under the title Syuyuu Sanpo, or Travel Mathematics. At least in the
book Kakki Sanpo (Concise Mathematics) by Shino Chigy6, which was pub-
lished in 1837, we find the following advertisement:

Mathematician Yamaguchi has traveled all over Japan for six years,
from the spring of 1816[7] to the winter of 1821. With many distant
mathematicians, he has discussed new technical methods of solving
mathematical problems. If you buy this book, then you will be able to
know and obtain without traveling the new technical methods of solv-
ing problems of far-away mathematicians.

Despite the promises of the author, Syuyuu Sanpo remained unpublished.
Nevertheless, the original diary has survived and currently resides in
the city of Agano as a declared cultural asset. Because we often have no
other information on the tablets Yamaguchi describes, his journal is a
unique resource for historians attempting to piece together the history of
Japanese mathematics. The book has never been fully translated, even
into modern Japanese, and what has been published is without the math-
ematical sections. We are pleased here to be able to introduce Western
readers for the first time to this remarkable document. At seven hundred
pages, itis far too long to present in its entirety. Instead, we have excerpted
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Y14 Okayama __.-
i Y17 Hiroshima R

Plate 7.2. Yamaguchi Kanzan traveled along this route for his third sangaku
journey, which took over two years in 1820-1822. Y1, . .., Y26 indicate the main
stopping points Yamaguchi mentions in the text.

a few passages from Yamaguchi’s third journey, 1820-1822, in which he
recorded more sangaku problems than in his five other trips combined.
Along with the excerpts we present a number of the problems Yamaguchi
describes. A few of them are fairly simple and the solutions should be acces-
sible to high school or college students. Most, we concede, are extremely
difficult and one or two remain unsolved to the present day. Resolute ge-
ometers may gird their loins; others may simply marvel at the beauty and
ingenuity of the problems. Interested readers can also follow the mathema-
tician’s itinerary on the map (plate 7.2), where Y1, Y2, . .. indicate Yama-
guchi’s stopping points.
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Plate 7.3. Two pages from Yamaguchi’s diary, showing several problems, including
the one given as problem 10 in this chapter. (Agano City.)

29nd of July, 1820 to 21st of August, 1820

Y1

22nd of July, 1820: “Many friends came to see me off in Edo for my long trav-
els and left me send-off haiku . . . After 10 2 [40 km], I arrived in Fuchu and
visited the Roku shrine. At night, I stayed at a farmer Yohachi’s house.”

26th of July: “I passed the castle town! of Takasaki and I remembered that
a mathematician Ono Eijyu lived there.”

Y2

27th of July: “I have visited the Hakuunsan Myoujin shrine and walked
across a river nearby since there was little water in the river. After passing

1Although “castle towns” had their origins as military strongholds, as discussed in chap-
ter 1 the Tokugawa shogunate limited the local warlords to one castle per domain. With
little fighting during the entire Edo period, the castle towns became administrative centers
and the castle took on the aspect of “city hall.” “Castle town” thus has a connotation closer
to “provincial capital” than to “fortified town.”

2Mathematician Ono Eijyu (1763-1831), a student of Fujita Sadasuke’s school (chapter
3) had been training many students to be mathematicians and sometimes helped geogra-
pher Ino Tadataka (1745-1818) to produce his map of Japan.
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through the guard station,” I arrived at the steep Usui pass and visited
the Kumano shrine above the tea house of the pass and enjoyed viewing
a sangaku in it. I have written down the sangaku problems of the Kumano
shrine in my diary. In particular, the preface on the tablet is interest-
ing.”

The tablet Yamaguchi describes was hung in the Kumano shrine in 1801
by Ono Eijyu, who wrote the preface: “Mr. Tsunoda, who hung this sangaku,
was born blind. He visited me and he told me that he eagerly wanted to
study mathematics and so I introduced him to my teacher Fujita Sadasuke
in Edo.* Tsunoda studied mathematics and hung this sangaku in this Ku-
mano Jinjya.”

28th of July: “There is the beautiful mountain, Mt. Asama.® When I
looked up Mt. Asama, I wanted to ascend it. Itis 5 7 [20 km] away from my
friend Jinzaemon’s house where I stayed last night. Climbing down the
mountain, I took the wrong way but didn’t have any trouble.”

2nd of August: “I visited the Suwa shrine in Sakashiro village and found a
sangaku.”

Yamaguchi recorded all of the problems on the Suwa sangaku, which was
hung by Kaji and Kobayashi in 1805. Kobayashi wrote, “I have discussed
mathematics problems with my friend all day and enjoyed it very much.
Then we decided to hang a sangaku in this shrine. We hope that the visitors
will look at this tablet and ask for any opinions about the problem.”

We have included one of the problems on the Suwa sangaku as problem
37 in chapter 4.

I4th of August: “Crossing the big river Chikuma by boat, I could visit the
village Hachiman, where a festival is being held, and there are many people
in the precinct. In the small village nearby, I found and recorded a sangaku
hung by Okuma in 1795, and that night I stayed in the house of my friend
Kitamura, who is a farmer.”

I5th of August: “With my friend Kitamura, I went to see the festival in
Matsushiro of Nagano province. This area is so beautiful that I have drawn
the scene in my diary. Afterwards, I came near the big Zenkoji temple,
which is one ri [4 km] away from here. Worshipping at Zenkoji is one aim
of my travels.”

3During the Edo period, travelers were required to carry permits and stop at checkpoint
barriers (sekisho) along major highways.

*See chapter 3 for more on Fujita.

52,560 m.
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Y3

17th of August: “At last I could visit the big Zenkoji temple in Nagano and
enjoyed looking at it. Today, when I arrived at Zenkoji, is a holiday, so there
are many visitors in the precinct. In the evening I entered the inn at Fu-
jinoya. Going out from the inn at mid-night I entered the guest house of
Zenkoji. I could stay the night with the other visitors because I had gotten a
pass from the Fujinoya inn to enter the Zenkoji guest house, but some of
the others didn’t get passes so they had to come back from the temple. This
morning I recorded four sangaku of the Zenkoji.”
We present three problems from the Zenkoji sangaku as problems 1-3.

Plate 7.4. The original illustration for problem 2, as it appears in
Fujita Kagen’s 1789 book, Shinpeki Sanpo. (Collection of Fukagawa

Hidetoshi.)
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Problem 1
This problem was hung by Seki Terutoshi at the Zenkoji Temple in 1804. We have a

regular n-sided polygon, with length of side a. From the vertex A we draw the chords,
as shown, as well as n —2 inscribed circles with radii 7,
(k=1,2,...,n—2). Find the radii r, of all the inscribed
circles in terms of a. Yamaguchi didn’t record the answer
because it was too complicated.

a We have found a traditional solution, which is on page 266.

Problem 2
This problem is from the second sangaku at the Zenkoji temple, which was hung by

Kobayashi in 1796. A quadrilateral ABCD is inscribed in the larger circle of radius R and
touches the smaller circle of radius r. Find rin terms of R and ACx BD. (Hint: The tablet
gives the solution for a specific case: If 2R=12 and

/r‘v‘ ACXBD =112, then 2r =7.)

A

The general solution can be found on page 271.

~

Y4

20th of August: “Entering the castle town of Takada in Niigata, which is near the
port, I visited the Suwa shrine and recorded sangaku problems proposed by
Yoshizawa in 1803. That day I stayed at my friend Yoichi’s home in Ima town.”
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Problem 3
This problem is from the third sangaku at the Zenkoji temple, which was hung by Saito

Mitsukuni in 1815. We have a segment of a circle. The line segment m bisects the arc and
chord AB. As shown, we draw a square with side d and an inscribed circle of the radius r.
Let the length AB = a. Then, if p=a+m+d+7r

and ¢ = m/a+ r/m+ d/r, find a, m, d, and rin d

terms of p and g. We have not been able to solve m

this problem.

On the tablet, Saito wrote: “This problem was A a B
first proposed by Tsuda Nobuhisa in 1749 on a
sangaku of the Gion shrine of Kyoto. Tsuda derived
the answer with a high-degree equation, one of
one thousand twenty-four degrees. But the famous
mathematician Ajima Naonobu showed how to
solve it with an equation of only the tenth degree
in the variable a. On this tablet, I will show Ajima’s
equation.” Yamaguchi, however, did not record the
equation.

This celebrated problem is known in standard
histories of Japanese mathematics as the Gion
shrine problem, because it was found on Tsuda’s
sangaku in Kyoto’s Gion, or Yasaka, shrine. As just
mentioned, the original solution was of 1024
degrees in terms of the length of the chord, but
in 1774 Ajima Naonobu (chapter 3) reduced it to
a problem of the tenth degree by the same
method Laplace used in 1772 to expand determi-
nants. Ajima’s feat, performed at age 42, brought
him great fame as a mathematician. The main
aim of the problem was to find a high-degree
equation in one variable, whose roots could then
be determined numerically by the painstaking
use of sangi (chapter 1). Ajima’s equation takes a
full page to write out, so we do not include it in the
solutions, but will provide it upon request.
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Plate 7.5. The Zenkoji temple as it appears today. (Photo Fukagawa Hidetoshi.)

12th of September: “1 will stay here, in Yada village, to the 19th of Jan, next
year.”

19th of January, 1821 to
19th of]\]ovembey‘, 1821

19th of January, 1821: “I have started from Yada village and am going to
Haruta village.”

22nd of February: “While I have been staying with my friend Eguchi Shin-
pachi, his son Tamekichi has asked me to teach him math and to make him
a student of the Yamaguchi school.”

Y5

21Ist of March: “After arriving in Shibata city, I have stayed with my friend
Minagawa Eisai.”

251
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24th of April: “In Suibara village, the place of my birth, I have spent over
twenty days. Now I will go to Nagaoka city.”

Yo

26th of April: “Arriving in Nagaoka city, I visited the Yukyuzan shrine and
recorded two sangaku. One was proposed by a disciple of Fujita in 1798 and
the other is as follows: . . .”

This tablet was hung by three merchants in 1801. It survives today and is
105 cm by 57 cm. We have offered one of the problems as problem 46 in
chapter 4.

16th of September: “I have been staying in my friend Arakawa’s home for
some months in Yamadani village and, today, I set off. I visited the Gochinyo-
rai temple and recorded sangaku problems proposed by Ohta Sadaharu in

1806.”

Y7

25th of September: “While passing the famous and dangerous coast of Oyashi-
razu, I have become careful.”

30th of September: “There is a big river the Kurobe near the inn and I
looked at the beautiful bridge 36 ken [70 m] long, which crosses the river
without any supports in the middle.”

Ys

3rd of October: “I have arrived at the big castle town of Kanazawa. This town
is so big that it had hundred thousand houses. However, on the first of Octo-
ber, I stayed in the castle town of Toyama where there are ten thousand
houses.”

Y9

7th of October: “I have arrived and visited the Asahikanzeon temple in Sabae

2

and recorded the sangaku as follows: . . .
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This sangaku, presented by Momota, is extant. We give one of the prob-
lems here as problem 4.

Problem 4
From the Asahikanzeon temple sangaku, this problem was presented by Momota in

1807. It asks us to solve the given system of equations for x, y, and z. For the special case
above, the table gives x = 78,125 =57, y= 16,384 = 47, and z = 2,187 = 37 It also gives the

answer for the general case of any integers, which involves a 49th-
x—1y=61741

y—z =14197

Ux+ily+¥z =12

degree equation. We have been unable to derive it.

Y10

8th of November: Yamaguchi arrived in the town of Tsuruga, which is 25 r¢
[100 km] from Kyoto. “In the town, I met with a mathematician Masuda
Koujirou who brought three problems and asked me for the solutions. I
could answer his requests and showed him the solutions. I have recorded
the problems in my diary.”

We give two of these problems here as problems 5 and 6.

I4th of November: “I have stayed in Kanbe’s home in Minamishinho village
of Takashima. At his house, Kanbe showed me a problem sent by Enoki in
Kyoto. The problem was made by someone in Osaka.”

This problem can be seen as problem 7.

16th of November: “Walking along the side of the biggest lake in Japan,
Biwako, I stopped at the sight-seeing place, Ukimido.”

19th of November: “1 have entered the big city of Kyoto. In this city, there
are a great many temples and shrines. I will spend the rest of the year in
this city and enjoy it.”

Problem 5
As shown above, six circles of radius r and three circles of radius ¢ are inscribed in the

large outer circle such that they are tangent to this circle and also touch the equilateral
triangle. If the radius of the outer circle is R, Find ¢in terms of R.
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Masuda asked Yamaguchi for the answer to this problem because he could not not work
it out. Yamaguchi showed him the answer that can be found on page 275. We also give it
as problem 13 in chapter 6 with a traditional solution by
Hiroe Nagasada.

Problem 6
One day, In6 Shujiro, aged 35, second son of the famous surveyor In6 Tadataka

(1745-1818), who made the first detailed map of Japan for the ruling Tokugawa
family, visited Masuda and posed the following problem:
The small circle inscribed in the right triangle ABC touches side AB at Q. A larger circle
passes through the vertices A and B and
touches the inscribed circle as shown above. A
If the line segment p bisects the chord AB,
and g¢is the length AQ, find the relation q
between pand g. p
Masuda was able to solve this straightforward Q
problem, which requires only high school geometry

and gave Ino the answer; our solution can be c
Jfound on page 275.

Problem 7
Of the problem below, Kanbe said to Yamaguchi, “Someone in Osaka is boasting

about this problem to Enoki.” Yamaguchi answered Kanbe, “I have been studying

this problem for four or five years and, at last, this spring, I succeeded in solving it.
But the problem is no good. I recommend that every student study more mathemat-

ics books rather than try to solve such a problem.”
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The reader may not want to spend four or five years working on the exercise, but here it
is: Three circles, one of radius @ and two of radius b, are inscribed in the arc, as shown. Two
equilateral triangles of the height p

are also inscribed in the arc, tangent
1 ‘ to the circles. Find pin terms of a and
c P p b b. The Osaka proposer gave an

example: If a=3 and b= 1.5 then
p="5.25.

The general result and a fairly easy proof can be found on page 276.

2nd of February 1822
to “1st of December, 1822

2nd of February, 1822: “I paid the fee 120 mon [about 5 dollars] to board a
boat, and enjoyed visiting a small island Chikubu in lake Biwako. Later,
I entered the castle town of Hikone, where I visited a mathematician Mat-
sumiya Kiheiji and stayed in his house. He showed me an unsolved problem

and a sangaku problem of the Taga shrine as follows: . . .
These two problems are given as problems 8 and 9.

Problem 8
This is a previously unsolved problem proposed by Matsumiya. An arc of a circle passes

through vertices A and B of right triangle ABC and is tangent to the triangle at B. The sides
aand b of the curved sector ABC are congruent with two sides of the triangle, as shown.
Divide side BCinto eight equal parts and erect

A

perpendiculars [, (k=1,2, ..., 8). Find the

lengths of [, (k=1,2,...,8) in terms of a=BC

and b= AC.

I b The problem turns out to be not so difficult and
L | solution is given on page 277.
Iy

B C



256 Chapter 7

Problem 9
Here is another sangaku problem originally drawn on a fan, one from the Taga shrine,

proposed by Katori Zentaro. The date is unknown. The large circle of radius r touches
three sides of the rectangle ABCD, as shown. Note AB < BC. We draw a line from D tan-
gent to the large circle and one of the small circles

to the other side of the rectangle. Assume that the B Af

two small circles both have radius ¢ Find the

shaded area S, in terms of the black area S,

The solution can be found on page 278.

Y11

o6th of IFebruary: “I went to the big Ise shrine and stayed at an inn. I heard
that a mathematician Koyama Kaname in Sendai city is staying at an inn
nearby, so I visited the inn but I could not meet with him, because then he
was out, unfortunately.” Yamaguchi then visited the Seihoji temple, where
he found two sangaku, noting, “I have recorded one sangaku hung by Sawai
in 1786 and the other sangaku hung by Koyama in 1819, which criticized an
incorrect solution on Sawai’s sangaku.”

18th of February: “I went to Wakayama and stayed at mathematician Nuno-
mura Jingoro’s home. His teacher is one of the second generation of disci-
ples of the famous mathematician Fujita Sadasuke. Nunomura showed me
sangaku problems of Kofukuji temple in Nara.”

Yi2

24th of February: “I have visited a big Himae shrine in Wakayama and re-
corded the sangaku problems proposed by Shintani Benjiré in 1806.” Later
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that day, Yamaguchi arrived at Ki-Miidera town and stayed at a carpenter
Benzo’s home.

28th of February: “When I entered Osaka, I visited a mathematician
Takeda Atsunoshin, who was a disciple of Ban Shinsuke. Takeda is an as-
tronomer, too. In the town, I saw leaflets (the size is 7 sun [about 20 cm]
long and 3 sun [9 cm] wide) about an astronomy lecture by Takeda. In his
home, Takeda showed me his mathematics problem.”

Y3

29th of February: “I visited Osaka castle, which is beautiful beyond descrip-
tion. Afterwards I visited the Tenman shrine and recorded three sangaku,
one of which has two problems.”

On the first tablet was a preface that we have quoted at the head of this
chapter. We give one problem from the third of the Tenman sangaku as
problem 10.

Problem 10

The third sangaku in the Tenman shrine was hung in 1822 by the mathematician

Takeda Atsunoshin. Takeda wrote a preface:

257

“My disciples are studying every day in order to solve the many problems given to them

by myself. I want to publish some of the good

solutions under the title Kyokusu Binran (Survey of
Maxima and Minima Problems). On this tablet, I have

advanced in mathematics.”

A selected and written some good problems on

Of the fourteen problems on the tablet, the

maxima and minima and dedicate the sangaku to
r this shrine so that my students will become more

following was proposed by Hayashi Nobuyoshi a dis-

ciple of Takeda: In a sector AOB of radius 7, draw a

small circle of radius x with center O. Draw the
tangent to the small circle from the vertex B, as
shown. (See also the original illustration, plate

7.16.) As xis varied, the area S(x) of the black part

of the figure will also vary. Show that S(x) is a

maximum when x = (293/744)r.
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Plate 7.6. The original illustration
for problem 10 as it appeared in
Takeda’s 1826 book Sanpo Binran.
(Collection of Fukagawa
Hidetoshi.)

4th of March: “I have arrived at Tatsuno city near Himeji and visited the
Syosya temple to record a sangaku proposed by Sawa in 1821. In the eve-
ning, Sawa visited me and he showed me an unsolved problem and two
sangaku problems of the Syosya temple. I have written them down in my

diary as follows: . . .

Two problems from the Syosya temple can be found as problems 11
and 12.
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Problem 11
This problem, proposed by Sawa Masayoshi in 1821, is from the sangaku of the Syosya

temple. As shown in the figure, five circles of radii 4, b, and ¢ are inscribed in a segment of a
large circle. If a =72 and b = 32, then find c.

The result for the general case is on page 280.

Problem 12
Also proposed by Sawa Masayoshi, this problem remains unsolved. As shown below, an

ellipse is inscribed in a right triangle with its major axis parallel to the hypotenuse. Within
the ellipse are inscribed two circles of radius . A third circle of radius r touches the ellipse
and the two shorter sides of the triangle,
aand b. Find rin terms of aand .

Yi4

7th of March: The mathematician Horiike Hisamichi hung several sangaku,
one of which was in the Kibitsu shrine in Okayama and another in the
Suzuka in Ise, far from Okayama. (Neither of these tablets survives.) Yama-
guchi wrote, “I have visited the Kibitsu shrine in Okayama and found a
sangaku problem proposed by mathematician Horiike in 1804, which I have

recorded in my diary.”
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Y15

8th of March: “Seto Nai Kai [the Inland Sea] is very beautiful and I crossed
it by ferry. I ascended a steep, tall hill in Kagawa and visited the Kotohira

shrine sitting on top of'it.”

Yie

2Ist of March: “The Dogo hot spring in Ehime is one aim of my travel
and when I arrived, I found many people having baths in the hot
spring.”

The Isaniha shrine in D6go has twenty-two surviving sangaku. When
visiting D6go, Yamaguchi could have seen two of these tablets in the
nearby Isaniha shrine. However, he makes no mention of them.

Plate 7.7. The Isaniha shrine today. The monkeys are not studying mathematics.
They are admonishing tourists to “See no evil, hear no evil, speak no evil.”
(Photo Fukagawa Hidetoshi.)
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Y17

22nd of March: “Once more, by ferry, I crossed the Inland Sea and arrived in
the evening at the traditional shrine Itsukushima in Hiroshima.”

Y18

11th of April: “Passing many cities, I have come near Hakata. I did some
sight-seeing at the big Kashii shrine and visited the Hakozaki shrine, where
I recorded sangaku problems proposed by Narazaki Hozuke in 1807. After-
ward, I visited mathematician Hiroha and enjoyed discussing math with
him. He showed me the following problem.”

We give Hiroha’s problem as problem 13. On the same day, Yamaguchi
arrived in Hakata of Fukuoka province.

I5th of April: “When I stopped at administrator Harada Futoshi’s house
in Shima village near Hakata, I was shown some unsolved problems which
were sent by Harada Danbe in Hamamatsu city.”

Harada Danbe in Hamamatsu hung a sangaku in the Akiha shrine
there.

3rd of May: As we discussed in chapter 1, during the Edo period, only one
city was open to the West, Nagasaki, and so Nagasaki was flourishing as the
center of international trade.®

“When I arrived at Nagasaki, I saw so many interesting things that I
could stay for some days here. I visited the Suwa shrine where I recorded a
sangaku.”

This problem was proposed by Kitani Tadahide in 1819. We give it as
problem 37, chapter 4.

Y19

21st of June: “As much as I am leaving my heart with Nagasaki, I have set off
to Kurume where I visited the Takarao shrine and recorded a sangaku
problem.”

6Agencies in several other locations were open for trade with China and Korea.

261
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The sangaku problem at the Takarao shrine was proposed by Ukawa Tsuguroku in 1808.
We present it here as problem 14.

Problem 13
One day, Hiroha said to Yamaguchi that he could not solve this problem and asked

Yamaguchi for the solution, but Yamaguchi doesn’t say anything about a solution in his
diary, and so we have no further information about it. Triangle ABCis inscribed be-
tween the arc AC of a circle of radius R and
the chord AC. A circle of radius ris in-
scribed between the triangle and the
chord. Two other circles, of radius s and ¢,
touch the circle ras well as the external

circle R and the chord, as shown. Given
that m=|t—1|, n=|t—s|, and p=|r—s|, find R
in terms of m, n, and p.

Problem 14
Ukawa Jiroku proposed this problem in 1808 on a sangaku at the Takarao shrine.

A cone with base of radius rand height % stands perpendicularly to a plane, as shown. The
vertex of the cone touches the plane. A chain of n small balls of radius rsurround the tip
of the cone. Find the integer n in terms of rand A.

The answer is on page 280.

Y20

11th of July: “After much walking, I reached Shimane and worshipped at the
big Izumo Oyashiro shrine which is the largest shrine after the one at Ise.
I have been very impressed by it.”
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Y21

I5th of July: “I have arrived at Tottori and stayed with Kitaro. I met two aged
persons who enjoy studying mathematics and astronomy.”

Y22

24th of July: “After entering Obama, I visited a mathematician Matsumoto
Einosuke who is a disciple of Kurihara in Obama.”

7th of September: Yamaguchi visited a shrine, Tenman, in Hirokawa village
in Takashima of Shiga. There he heard that a sangaku from 1748 was hang-
ing in the shrine and recorded it in his diary. Two problems from this
sangaku, which were proposed by Kashiwano Tsunetada, can be found as
problems 15 and 16.

Problem 15

263

This problem of Tenman shrine in Hirokawa village was proposed by Kashiwano Tsune-

tada in 1748. Kashiwano wrote a preface on the tablet:

“Mathematics is very important in ordinary life and I like to study mathematics. I have

A

H problems.”

I'am very glad if someone tries to solve the

written my three favorite problems on this tablet
and have not written the answers for two of them.

Draw a circle of radius r=2.4 touching the

P hypotenuse AB and the side BC of right triangle

i CP =13, find CH.

B c The answer is on page 281.

I5th of September: “I have arrived at Lake Biwako once more. While visit-
ing the Miidera temple in Shiga, I recorded two sangaku as follows: . . .”

The first sangaku at the Miidera temple was hung by Ogura Yoshisada in
1817. Ogura wrote on it: “Mathematics is the origin of everything in the
universe. In particular, when we investigate something in astronomy, math-

ematics is important. I was admitted to the Seki school when young and

ABC. From vertex Calso draw the line CP,
which is tangent to the circle. If the length
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Problem 16

Another numerical problem from Kashiwano at the Tenman shrine: /is the center of

Chapfer 7

eagerly studied mathematics. Now, I want to hang a sangaku on which new
problems and their solutions are written. If visitors would look at my san-
gaku, then I would be very happy.”

Yamaguchi also viewed the sangaku in the Shinomiya shrine located
in the area of Miidera temple. Afterward, he visited Okada Jiuemon, who
dedicated the Shinomiya sangaku in 1821, to discuss math. “Okada said to
me that he wanted to enter into my school to further study mathematics. At
his home, Okada showed me a copy of sangaku of the Kiyomizu temple in
Kyoto and the Ishiyamadera temple in Shiga.

“In the evening, a lover of mathematics, Asano Masanao, visited the inn
where I am staying. He asked me for permission to advertise ‘A lecture on math-
ematics performed by the famous mathematician Yamaguchi.” I have granted
his request. Some days from now, the notices will appear in the town.”

the circle shown, inscribed in right triangle ABC. If BI =4.03888736 and Al=3.87886, then

find a, b, and c.

Y23

17th of September: Yamaguchi visited the big Kitanotenman shrine in Kyoto
and recorded two sangaku. One of these was dedicated by Nakamura Syuhei
in 1819. On the tablet, was a postscript: “My teacher Nakamura Fumitora is
a very famous mathematician. Many people visit the Nakamura school. He
is aged 60 this year. Esteeming his work, we, his son Nakamura Syuhei and
his student Hitomi Masahide, have decided to hang a sangaku in this shrine.
We have selected eight nice problems and have drawn them on the tablet.”

One of the problems on this sangaku was proposed by samurai Kamiya
Norizane in 1819. We give it as exercise 3, page 336, chapter 10.
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18th of September: There was a great statue of Buddha in the Hokoji temple
of Kyoto. Yamaguchi wanted to see it, but the statue had been destroyed. “I
have started in the Hokoji temple at the place of the great statue of Buddha
and visited the Kiyomizu temple. There I recorded a sangakuhung by Ritouken
in 1822. On the tablet, the names of lovers of mathematics were written.”

21st of September: “In mathematician Takeda’s house, I saw one sangaku
problem that is to be hung in the near future and another problem which
was already written on the tablet of the Tenman shrine. I have written them
in my diary.”

We give Takeda’s problem “to be hung in the near future” as problem 17.
The other problem on the Tenman shrine sangaku was proposed by Mori-
kawa Jihei and is presented as problem 18.

Problem 17
Here is Takeda’s problem “to be hung in the near future”: We are given a segment of a

circle of radius R. Draw two smaller circles of radius rinside the segment such that they
touch each other; both are tangent to the chord AB; one touches the arc ABand one
touches the tangent line AP. If AB=kand AP=m,
find rin terms of k&, d, and m.

P The answer is on page 281.

Problem 18

This is Morikawa’s problem at the Tenman shrine, proposed at an unknown date. Two
circles with radii a and & sit on the line /and touch each other. Between them is an
inscribed a square with side x. Find the minimum of x in terms of a and b.

The tablet contained no solution, but Mori-
kawa had written, “I will be very happy if some-
one can solve this problem.” And so, says
Yamaguchi, “I went to Morikawa’s home with my
friend Takeda and asked him what the answer
is. He said that he could not solve the problem
yet.” Neither does Yamaguchi’s diary contain a

solution and, like Morikawa, we would be very

happy if someone solves this problem.
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Y24

24th of November: “Four days ago, I stayed at Toraya Kyoemon’s home and
visited the Atsuta shrine in Nagoya. Crossing the big river Tenryu, I arrived
in nearby Hamamatsu city. Here, I visited a shrine Akiha and recorded san-
gaku problems proposed by Harada in 1822.”

Y25

29th of November: “I arrived at the famous spa Hakone today. I saw many
bamboo souvenirs in the shops here.”

Y26

Ist of December, 1822: “At last I have arrived at my school in Edo and have
finished over two years of travel. I have enjoyed this journey. After
some rest, I will plan my next sangaku journey. This is the end of my
third journey.”

Answers and Solutions to Selected
Diary Problems

Problem 1: First Problem from the Zenkoji Temple

Yamaguchi did not record his solution in his travel diary because it
was too complicated. However, the problem appeared in Fujita Kagen’s
book Zoku Shinpeki Sanpo (chapter 3). The title refers to the fact that it
is a “second enlarged edition” of Fujita’s 1789 Shinpeki Sanpo.

The problem is also found in the notes of certain contemporary
mathematicians, among them a manuscript of Yoshida Tameyuki
(chapter 3) with the same title as Fujita’s book. We present Yoshida’s
solution to the problem here; although lengthy, it requires no
elaborate mathematics. However, before we get to Yoshida’s solution
proper, some preliminaries are needed.

As in figure 7.1, we circumscribe the polygon with a circle and label
the vertices A, (k=1,2,..., n—1), such thatlengths A, =A/A, =" - =
A A =a.

n—2" "n-1
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Figure 7.1. An n-sided regular polygon with side
length a, = a.

We are to find », (k=1,2,..., n—2), the radius of the inscribed circle

of triangles AA A, ,, in terms of AA, = a; = aand AA, = a,. [Note: Once
we have the answer in terms of aand a,, it is easy to find a, in terms of a.]

The following definitions will prove useful in the proof:

eEa—Q’ s = g, l=s(2-¢)a. (D
a 2+e¢

In terms of these quantities, the answer to the problem is

s
n=—=a
1 92
2
B l
h=em—3

2

Ty =er,—n——,

2
. l
4 —”3_72_5’

l

Tito ZWkH_Tk_E'

To obtain this result we must first prove two lemmas, which Yamagu-
chi did not state:
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Lemma 1: The relation among the sides «, is

= eay — a,
a, = ea,— a,,
a, = ea,— a,,
6 = ¢ T Ay
Qo = €A, — Q.

The last expression is termed a recursion relationship. To prove it,
notice that, because the polygon is regular, all the chords drawn from
vertex A subtend equal angles on the drawn circle. Thus, as indicated
in figure 7.1, all the angles A,AA, | are the same. Call this angle 6.

For the first triangle AA,A,, the law of cosines gives
a® = a3 + a® — 2aaycos 0,

or
a e
cos@=-—2=_,

2a 2
from the definition of e. In general, figure 7.1 shows that
az., +a:—a?

e
cosf ="K — =,
2a;.,a, 2

(2)
For k=2, equation (2) gives
a§ — easas + (a3 —a®) =0,

which is a quadratic equation for a, in terms of a, and a. Write

x2 — easx + (a3 —a?) = 0. For a quadratic equation ax? + bx+ ¢= 0, the
sum of the roots x, + x, = —b/a. In our case, x, + x, = ea,. One root,

x, = a, = a, can be found by inspection. Figure 7.1 shows that this
corresponds to the side a, ; = a, of the smallest triangle AA,A,, which
means that the larger root x, corresponds to the side we are looking
for, a,,, = a,. Hence,

a, = eay—a.
Similarly, for k= 3, equation (2) gives
aj —easa, + (a2 —a?) = 0.

Here, x, + x, = ea,. From the k= 2 case, we suspect that the smaller root
corresponds to the side of the previous triangle, or x, = g, , = a,, which
is easily verified by substitution. Therefore, we have at once

d4 = Bds - 02.
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One can see that, in general,
Afyg = U Qg + (a1 —a?) = 0,
and consequently
ot a,=ea,, . (3)

We have proved the desired recursion relation a,,
Lemma 1. QED.

o= e, — a, and thus

Lemma 2: 1f the circle inscribed in triangle ABC touches the side AC
at D, then AD=b=(AB + AC- BC)/2

By drawing the auxiliary dotted lines in figure 7.2 it is very easy to
prove this lemma and we leave it as an exercise for the reader. At this
point Yoshida’s solution formally begins.

Figure 7.2. Drawing for lemma 2.

Yoshida’s solution:

We start by finding r,. Notice that AAA A, is isosceles, and so its area
is g agh, where his the altitude. However, one can easily show that
A= %r](Qa +ay). [Hint: Draw a figure similar to figure 7.2 and add up
the area of the interior triangles.] From the Pythagorean theorem

h = \a* —a3/4, and so,
ag\a® —a3/4 =1 (2a+ay).

1 |2a - a. 1
"o a, T2 W

where we have used the definition of sin equation (1). This gives r, as

Solving for r, gives

shown in the answer.

We now find the remaining r, (k=2, 3, ..., n—2). To do this is rather
easy, exploiting the lemmas we have already proven. We will also make
use of the quantity b,, which is the length ADin figure 7.2. See also
figure 7.3.
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Figure 7.3. The length b, is the length from A to
the point where the kth circle touches a,, .

Lemma 2 gives directly by, = §(ag +ag —a).

Bylemma 1, a, + a, — a= ea, — a, + a, — a. Recalling that a, = ea and

letting w=2 — ¢, we have a, + a, — a= ea, — wa, and so

2
by = l(ea — wa)
2 TG\ .
By the same method,
1
by = §(a4 +as —a) (lemma 2)
= E(ea3 —ay t+ea, —a—a) (lemmalon a, and ay)
1
= 5[6(03 +ay) — as — 2al
= %[6(%2 +a)—a, —2a] (lemma 2)
= eb, _%% —%(2 —e)a.

1

=eb, — b —Ewa.
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Similarly,
by = l(a5 +a, —a) (lemma 2)
2
= %(604 —ag +ea; —a, —a) (lemma I)
1
= E[e(a4 +ag) —(ag +a,) —al
= %[6(2173 +a)—(2b, +a)—a] (lemma 2)
1
=ebs — by, ——=(2-e)a,
2
=eby — b, —%wa.

Thus, in general,

brrg = by = by = 5“’”- (5)
Now, from figure 7.3, we see that all the right triangles are similar,
and so
H_oB_. .24
by b, b

But from equation (4) we know that

" 2a — ay
—= [——= ==
by 2a + ay

Thus, the quantity sis in fact the ratio of r,/b,. Subsituting equation
(5) for b, gives the final result

l
Thtg = M1 — N —ans Sl — N T

2

as stated. [Note: The problem in Yamaguchi’s diary asks for the solu-
tion in terms of a alone. We leave this step as an exercise for the
reader.]

Problem 2: Second Problem from the Zenkoji Temple
One example and the answer for the general case were written on
the tablet.
The example is as follows: If 2R =12 and AC x BD = 112, then 2r= 7.
The answer to the general case:
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~ AC X BD
9JACx BD +4R?

r

We here offer another proof after Yoshida from the same manu-
script. This proof is also long, but perhaps easier than the previous
one, requiring nothing more than basic trigonometry and relation-
ships among line segments of triangles circumscribing circles.

The general strategy is to find expressions for ACand BD in terms of
R, 1, and the other quantities. The first step is to temporarily remove
segment BD and consider only AC. We then draw two auxiliary circles,
as shown in figure 7.4. Dropping perpendiculars from the centers of
these circles to the sides of the quadrilateral, we denote the radius of
the larger one by r, and the smaller one r,. Clearly, because circles r
and r, are inscribed in the same angle, their centers lie along the same
chord. The same applies to rand r,. Then, by similar triangles,

T8 and L2 1)
d b b,

Figure 7.4. The line segment BD is
temporarily removed and we draw
the two dash-dotted circles of
radii , and Ty, inscribed in
triangles ADCand ABC, respec-
tively. Both circles are tangent to
the chord AC.
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Also, the tangent distance from A to circle r, is a + d — d,;, and from Cis
c+d—d,so

AC=a+ c+2(d - d). Q)

Similarly, the tangent distance from A to circle 7, is a + b — b, and from
Cis ¢+ b — b, so we can also write

AC=a+ c+2(b-b). 3)
Letting AC = land using equations (1) gives

d, = 2d+a+c—l’
2 (4)
’
7 2d(2d+a+c 0),
and
20+a+c—1
=200
2 (5)

T =é(2b+a+c—l).

Next, dividing the quadrilateral ABCD into triangles and adding up
their areas (= one-half base x altitude) gives the nice result

Apep=r(a+tb+c+d). (6)

Similarly, we find for the area of triangle ACD
Ayep = %[2(0 +c+2d—d))+2d,].

Using /= a+ ¢+ 2(d - d,) from equation (2) and the first of equations
(4) to eliminate d, gives

Ay =%(24+a+c+z).

For the top triangle ABCwe play the same game, with /from equation
(3) and the first of equations (5) to eliminate 4, and get

Ao = %(2b+a+c+l).
Setting A .= A, ot A,pyields
2r(a+ b+ ctd)=r(2d+a+c+l)+r,(20+a+c+l). (7)

We can now eliminate r, and 7, through the second of equations (4)
and (5). A few lines of algebra gives an expression for AC? = [*:
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Figure 7.5. The length AC = 2R sin ¢, but because the triangle
OABis isosceles, ovand B are supplementary and AC =2Rsin B.

4(a + c)bd (8)
(b+d)
Next we need to make use of a lemma, that AC(b? + v*) = 4Rrb and

AC (& + r*) = 4Rrd. Because Yoshida states this result without proof, we
give a simple modern proof:

AC? =(a+c¢)? +

Proof of Lemma:
As shown in figure 7.5, AC=2Rsin ¢, but «is supplementary to B
and so
AC =2Rsin B
=4Rsin B cos 5
2 2
2 b

=4R .
\/b12 + 158 \/bf + 1]
Eliminating b, and r, with the help of equation (1) gives
AC(% + r*) = 4Rvd. (9)
We also have AC= 2R sin D. Following the same procedure yields
AC (& +1?)=4Rrd, (10)

which proves the lemma.
Dividing equation (9) by equation (10) then shows that

7 = bd, (11)
and reinserting this into equation (9) yields the penultimate relationship
b+d) = (12)

AC
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The next stage is to go back to the beginning, remove chord AC
from figure 7.4, reinstate chord BD, and repeat the entire analysis to
find an expression analogous to equation (12) for BD. By symmetry,
however, one can guess the correct answer:

4Rr

BD '

The proof is now essentially complete. Inserting the expression
just obtained for (a + ¢) into the right-hand side of equation (8),

and eliminating (b + d) with equation (12) gives the desired
result

(a+c¢) = (13)

(AC- BD)? = 412(AC - BD + 4R?). (14)

The reader can verify that if 2R=12 and ACx BD =112, then
2r=1.

Problem 5: Masuda’s First Problem
Yamaguchi’s answer to Masuda is as follows:

o 74932 +108)
2 +4/108
Yamaguchi seems to have been uncertain about this result and he wrote
a second answer above the firstin his diary: ¢ = 3/(7 + 43 — «/ﬁ )R.
Perhaps he meant this as a correction, but the result is numerically
identical to the first and cannot be reconciled with the figure.

Fortunately, we have found an original solution to the same prob-
lem. The correct answer is

R =0.2873R.

t = %[&39, 085 + 3,409+/3 —102v3 — 165] = 0.1697R.

For the full solution, see chapter 6, problem 13.

Problem 6: Ino’s Problem
The solution of Ind’s problem requires no more than the Pythago-
rean theorem. We are given that ¢ equals the length AQ and that
segment p bisects the chord AB. Let x equal one-half AB. Then from

figure 7.6 ¢= x+ h. Note also that A= x — 7, where ris the radius of the
small circle. Therefore

=
Il
R

o

275
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g=x+h

h=x-r
Figure 7.6. A few auxiliary lines

help.

Let Rbe the radius of the large circle and k= R— p. Drawing the
auxiliary dotted lines, we see that by Pythagoras

2+ (R- p)2= R

Squaring this out with x= ¢ — hyields

h?=2Rp+ 2qh— ¢* — p. (2)
Inserting equation (1) into the right-hand side of equation (2) gives
h?=2Rp— qr— p*. (3)
The diagram also shows that
12+ (r—k)?=¢€2. (4)
But by inspection €= R— r. Solving equation (4) for A* with k= R— p
then gives
h?=2Rp— p* — 2rp. (5)
Substituting equation (5) into equation (3) yields the required result,
q=2p.

Problem 7: The Osaka Problem
The general solution is p= (3a+b)/2.
We could not find the original proof but the result can be obtained
fairly easily as follows:
Draw in the full circle of radius 7, as in figure 7.7. Also draw three
lines, two radii from the points at which circle ¢ and the equilateral
triangle touch circle 7, and and a line from the center of rto the
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/'\b

e

r-2a

Figure 7.7. The Osaka problem.

center of b. With the Pythagorean theorem it is not difficult to
show that
2
+ 2],

2
(r=02=0B+r-2a)?+ (—+2—p+—J

r? =(p+r—2a)2+(

e
S

Similarly,

RERRERNG

Solving each equation for rand eliminating r between them gives
(2a— p)b* + (64> + 4p* — 2ap) b+ p(3a—2p) (ba+2p) =0
which factors into
[b+ (Ba—2p)1[(2a—p)b+ p(ba+2p)] =0
From figure 7.7, the second term must be positive. Therefore
b+3a—-2p=0,or
3a+b
2

as stated. One wonders why Yamaguchi thought about it for four or

p:

five years.

Problem 8: Matsumiya’s Problem

Matsumiya did not give the answer to his problem but it is very easy
and we can obtain the solution as follows:

Find the center of the original circle O of which the given arc is
part. As shown in figure 7.8, draw in three radii from O to the end-
points of the arc and to the point where one of the perpendiculars,
l,, intersects the arc. Then the Pythagorean theorem gives
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o
r
________________ A
r r
b
Iy
Figure 7.8. For Matsumiya’s problem. B C

= a’+ (r—b)?% or r=(a®+ 0%)/2b. If we label the /, from the left, then
the Pythagorean Theorem also gives r* =(ak/8)*+ (r — )%, and hence
the desired solution

2
L =r— 72—(%j (k=1,2,...,8).

Problem 9: Katori Zentaro’s Problem

Katori’s answer is
sl=(17_ 280 js?

28 - 31
To get this result we follow another proof by Yoshida, which requires
nothing more than elementary geometry and patience. The plan is to
find expressions for tand b (see figure 7.9) in terms of r; this will allow
us to compute the required areas.
First, draw the auxiliary triangle shown in the figure. Then, by
similar triangles,

t _ r (1)

p ox+p

But by Pythagoras

2+ (r—0%2=(r+ 02
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B a=2r A
r r
b
g r
X
o P/t t

t P Figure 7.9. For Katori Zentard’s problem.
C D

Squaring this equation and solving for x gives x = 9\rt, and therefore
from equation (1)
4 r

R
Solving for pyields

_ Qt\/ﬁ (2)

r—1i )

P

Convince yourself that the marked angles are the same. [Hint: It
may help to drop a perpendicular from the center of the large circle
to the hypotenuse of the triangle.] Then once more, by similar
triangles,

9L o g=2. (3)
rop P

Since the two sides BCand AD are equal, we have t+ p+qg+r =

p+ 2«/;t + 7, or, from the above expression for ¢,
2 ])\/;t = pt+1t.
Eliminating p with equation (2) gives after a few steps

Bt —r? = 20rt.
Squaring both sides yields the cubic equation

= 1072t + 2512 — 482 =0,
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which factors into
(r—4t)(r* =611+ 1*) = 0.
Thus, we have three roots for r:
r=4t, r, =3t + 8t (4)

Convince yourself from the figure that the r=4¢root is the only one we
want, from which equations (2) and (3) give

r 3r
p=75 and ¢=-
We also have &= t+ p=7r/12. From the figure, b= r+ h+ ¢, and so
po e (5)
3 6

This is the desired result for b.

Now, referring to the original figure on page 256, the area of the
black region is S, = %h -2r — mt2. We use the above expressions to write
hand tin terms of 7, and solve for 7* to get

48
2 = O
g [28—37:) 52 (6)

Again referring to the original figure, we are to find the area of the

shaded region S, = ab -y ah — wr? — 7. By assumption a = 27, and we
once more use the above expressions to write 2 and ¢in terms of .
Then using equation (6) we get

5, = (Mj 5, = (17_ 280 JSQ, )
28 -3rm 28 - 31

which is Katori’s answer.

Problem 11: Sawa’s Problem from the Syosya Temple

The answer for the specific case a= 72, b=32is ¢=25.
In general,

. _ aa++b)?
3b+ab

Problem 14: Ukawa’s Problem from the Takarao Shrine

The number of balls is n = greatest integer part of 4/2r7.
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Problem 15: Kashiwano’s Problem in the Tenman Shrine
The answer is CH = 5.

Problem 17: Takeda’s Problem
The answer is

9y = 2{4R - (25 + D)k — 24}

>

(25 +1)2
where
. T - J(1—m/2R) (4R? — k?) + k
T+Am—T?—m (m/2k)?
2 2
and R = AR

8d

>

281



Plate 8.1. The illustration from Uchida Kyo’s 1832 collection Kokon Sankan, for
a problem that was originally proposed in 1822 by Yazawa Hiroatsu on a tablet
hung at the Samukawa shrine of Kdzagun, Kanagawa prefecture. The result is
known in the West as the Soddy hexlet theorem. (Aichi University of Education
Library.)



FrioHut

East and West

For pairs of lips to kiss maybe

Jnvolves no trigonometry.

"Tis not so when fouw* circles kiss

Each one the other three.

To bring this off the four must be

As three in one or one in three.
—TFrederick Soddy, from
“The Kiss Precise”

Jf there is a single lesson to be drawn from the preceding chapters, it is
that creativity respects no geographical or cultural boundaries, in science
or art. We are taught in Western schools that mathematics flowed from an-
cient Greece to Western Europe, and with it so too did the great stream of
discovery. One cannot and should not deny that the majority of important
“classical” mathematical results have come to us through Greece and Eu-
rope but, as far as the subject of this book goes, a few famous theorems at-
tributed to Western authors were in fact posted on sangaku prior to their
occidental discovery, and a few others, which had been previously found in
the West, were independently discovered by traditional Japanese geome-
ters.

We have already employed many of the ancient theorems common to
East and West to solve problems throughout Sacred Mathematics. Apart from
the omnipresent Pythagorean theorem, which reached Japan through
China, there was Ptolemy’s theorem, “The sum of the products of the op-
posite sides of a cyclic quadrilateral is equal to the product of the diago-
nals,” which was required to solve problem 1, chapter 6. It is found, for
example, in the 1769 Syuki Sanpo, or Mathematics, by Arima Yoriyuki (chap-
ter 3).
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Similarly, the law of cosines, which has figured in many exercises, turns
up in an equal number of traditional Japanese manuscripts, for instance,
the 1840 Sanpo Chokujutsu Seikai, Mathematics without Proof, by Heinouchi
Masaomi (?-?). (See also the solution to problem 27, chapter 4.) The law
of sines was likewise well known. One finds it written on a surviving tablet
dating from 1849 at the Kumano shrine of Senhoku-gun in Akita prefec-
ture, as well as in the earlier book Sanpo jojutsu of 1841. Heron’s famous
formula for the area of a triangle, which was employed to solve problem 4
in chapter 6, is found in an unpublished nineteenth-century manuscript
of Kawakita Tomochika (1840-1919). We pointed out in chapter 3 that
the conditions for Pythagorean triples were independently derived by tra-
ditional Japanese mathematicians; so too were the less well-known Heron
numbers, which are quadruples of integers that, analogously to the Py-
thagorean triples, can be associated with the sides of a nonright triangle
and its area. In the solution to problem 1, chapter 5, we mentioned that
Euclid’s algorithm was also known in Japan through China.

To mathematicians these theorems are elementary—most are proved in
any high school course—and one could argue that it is hardly remarkable
that the Japanese came across them. However, traditional Japanese geometers
also discovered a number of more advanced and celebrated “modern” theo-
rems independently of their Western counterparts. Let us survey these now.

Descartes Circles, Soclcly Hexlets,
and Steiner Chains

The Descartes circle theorem concerns the relationship between the radii
of four mutually tangent, or kissing, circles and is one of those theorems
that has been periodically rediscovered over the centuries. The ancient
Greeks often concerned themselves with the properties of tangent circles;
Apollonius himself devoted an entire book to the subject in the third cen-
tury B.C., and it is entirely conceivable the result was known to him; how-
ever, his work On Tangencies has not survived.

The theorem as we know it receives its name from René Descartes, who
mentioned the result in a letter of November 1643 to Princess Elizabeth of
Bohemia,! with whom he discussed philosophical and mathematical mat-

YOeuvres de Descartes, published by Adam et Tannery (Paris, 1901), vol. 4, p. 45.
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Figure 8.1. The Descartes circle theorem gives the relation-
ships among the radii of four kissing circles. The fourth
can Either circumscribe the other three, or vice versa.

ters (presumably there is a lesson here about the change in political lead-
ers between then and now). In modern notation the theorem can be written
as it was employed to solve problem 12 in chapter 6:

2(ki+ k3 + k3 + k%) = (ky + by + ky + €)%,
2(ki+ k3 + k3 + C2) = (ky + ky + kg — )2

Here, the k’s are the reciprocals of the radii of the circles shown in fig-
ure 8.1 k, =1/r,, etc. The reciprocal radius of a circle is termed the curva-
ture, or in some older texts the “bend.” For the situation in which the three

circles r ., 5 touch the fourth circle ¢ externally, the curvature of ¢ is

b
taken to be positive, and so kK = 1/t comes into the formula with a plus sign.
When r,, ..., r, touch the fourth circle rinternally, the curvature =1/ris
taken to be negative and comes in with a minus sign.

Descartes himself considered only the first configuration—three circles
kissing (—and his sketch was incomplete. In 1826, the great Jakob Steiner
(1796-1863), one of the mathematicians who discovered inversion, inde-
pendently proved the Descartes circle theorem for both configurations
shown in figure 8.1. The next Western discoverer seems to have been
Philip Beecroft, an English amateur mathematician, who derived the re-
sult in 1842. Finally, it was rediscovered again in 1936 by Frederick Soddy
(1877-1956). As mentioned in chapter 6, Soddy is known to scientists as
the physical chemist who, along with Rutherford, discovered the transmu-
tation of the elements via radioactive decay, and who immediately realized
its implications for the future of the world. Soddy won the 1921 Nobel
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Plate 8.2. On the right is Descartes’ original drawing for his circle theorem as
itis found in his letter to Princess Elizabeth of Bohemia of November 1643. On
the left is the illustration for the Japanese version of the theorem as it appears
in Hasimoto Masataka’s 1830 Sanpo Tenzan Syogakusyo, or Geometry and Algebra.
The theorem was well known in Edo Japan and employed to solve numerous
sangaku problems. (Collection of Fukagawa Hidetoshi.)
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Plate 8.2. (continued)

Prize in chemistry for the discovery of isotopes, a term he apparently
coined. Being a physical chemist, he was interested in packing problems:
How many cylinders (or circles) of differing sizes can be fitted into into a
larger circle? In the grand tradition, Soddy published his rediscovery of
the Descartes circle theorem as a poem in 1936 in Nature.? Here it is in its
entirety. You will see that that the second verse describes the formula just
given:

The Kiss Precise
by Frederick Soddy

For pairs of lips to kiss maybe
Involves no trigonometry.

"Tis not so when four circles kiss
Each one the other three.

To bring this off the four must be
As three in one or one in three.

If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

2 Nature 137, 1021 (1936).
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Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends

Is half the square of their sum.

To spy out spherical affairs

An oscular surveyor

Might find the task laborious,

The sphere is much the gayer,

And now besides the pair of pairs

A fifth sphere in the kissing shares.
Yet, signs and zero as before, For each
to kiss the other four

The square of the sum of all five bends

Is thrice the sum of their squavres.

Notice that the final verse describes the Descartes circle theorem for
spheres and, indeed, a year later Soddy produced the famous hexlet theo-
rem that bears his name: Given two spheres inscribed within a third sphere,
such that they kiss each other as well as the outer sphere, put a necklace of
spheres around the two given spheres. If all the spheres in the necklace kiss
their nearest neighbors, as well as the outer sphere, then six and only six
spheres can be placed in the necklace (see figure 8.2)

Once again Soddy published his result in Nature.®> We recognize this
problem, however, as identical to problem 17 of chapter 6, which was
originally posted in 1822 by Yazawa Hiroatsu on a sangaku hung in the
Samukawa shrine of Kézagun, Kanagawa prefecture. This is apparently
the first statement anywhere of the hexlet theorem. Moreover, the final
verse in Soddy’s poem is a statement of equation (1) in Omura Ka-
zuhide’s proof, which we gave as the solution to problem 17. Soddy’s
proof is in fact remarkably similar, almost identical, to Omura’s. Thus,

3 Nature 139, 77 (1937).
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Figure 8.2. Six and only six spheres can be fitted in the
“necklace” around spheres a and b.

we need say little more about it, except to repeat that it is more easily
solved by inversion.

As for the Descartes circle theorem itself, this seems to have been the
common property of traditional Japanese mathematicians. In the Des-
cartes configuration it appeared on a sangaku in 1796, which was subse-
quently lost but recorded in the 1830 book Saisi Sinzan, or Mathematical
Tablets, by Nakamura Tokikazu. For interested readers, we now give a
Japanese proof from the 1830 Sanpo Tenzan Syogakusyo, or Geometry and
Algebra, by Hasimoto Masakata. It is about at the level of the problems in
chapter 5.

First, we need a preliminary result: Given three kissing circles with radii
Tys Ty T3, AS in figure 8.3, show that

272
ril

(AB)? = ————,
(n+1)(n+13)

(D
where [is the external tangent common to circles r, and r,. This problem
is an easy one and we leave it as an exercise for the reader.

Referring to figure 8.4 and noting that all the circles are mutually kiss-
ing, the preliminary result gives at once

)
(AB)? = 75 (2 %) _ 4rinny
(n+13)(r +13) (rl+rg)(r2+rg)’
2 )
(AC)? = 4rint (BC)? = 4r3nyt (2)

(n+7)(t+7) () ()
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Figure 8.3. Find ABin terms of r, r,, r,, and L.

Figure 8.4. Because the indicated angle at A is a right angle, it is inscribed in a

semicircle and the two arrows will intersect at the opposite end of the diameter
containing CO, ata point C’ (not shown).
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The inscribed angles ABH and AC’C subtend the same arc and so are
equal. Thus, from similar right triangles,

AC _ An
2r, AB ’
which gives with equation (2)
(Amy: = ABMAO! Arinrit .
4rg (rp +715)%(r +135) (L +73)

From the Pythagorean theorem

4yt "
CH)? = (AC)2 —(AH)? = 13 1- 12 ) 3
(CH) (ACK = ) (rl+1"3)(t+73){ (7"1"‘72)(72"‘73)} (3)

Applying the law of cosines to AABC'tells us that (AB)? = (AC)? + (BC)? +
2(BC)(CH). Plugging in the values from equation (2) and (3) yields the
ungainly

4rinr, _ 4rint 4rinyl
m+n)nt+r) (+r)l+r) (p+r)+r)
QTSW/& QVEH/E \/1 nr

+ 2 - ,
Joo+m) +1) o +r) () V(7)1 +73)

which nonetheless readily simplifies to

Yol +13) = nt(ry +19) + 19l(1 +175) + 21/‘\/717273(71 +71y +13),
or, solving for ¢,

e
[ = 17273

nry + 175 + Torg + 2\/1’1721’3(71 + 79 +13)

We leave it to the reader to show that this is equivalent to result on page 285.

Closely related to the Descartes circle theorem and Soddy hexlet is the
“Steiner chain” or “Steiner porism,” after Jakob Steiner, who first consid-
ered such configurations in the West. Given two circles, one within the
other but not concentric, we imagine trying to fit a chain of smaller circles
of various sizes between them, each of which kisses both the inner and
outer circles, as well as their nearest neighbors. We have already encountered
similar configurations in chapter 6; the hexlet is a three-dimensional rela-
tive; a precise two-dimensional example is shown in plate 8.3.



2092 Cl/\ap'l'ev‘ 8

Plate 8.3. In about the same year
Jakob Steiner was inventing Steiner
chains, Ikeda Sadasuke hung this
problem at the Ushijima Chomeiji
temple in Tokyo. The drawing is
from Shiraishi Nagatada’s 1827
book Shamei Sanpu. (University of
Aichi Education Library.)

One can well imagine that, if the radii of the circles in the loop are
not just right, the circles will not fit properly and end up overlapping, or
contain a gap at the end of the chain. Employing the method of inver-
sion, which he largely invented, Steiner found the conditions on the ra-
dii of the smaller circles in the loop.

However, in 1826, just about the time Steiner was inventing inversion, a
sangaku was hung by Ikeda Sadakazu at the Ushijima Chomeiji temple in
Tokyo. The tablet was lost, but recorded the following year in Shiraishi
Nagatada’s book Shamei Sanpu, or Collection of Sangaku, from which plate
8.3 was taken. The problem asks, given two nonconcentric circles with a
loop of fourteen smaller circles inscribed between them, show that

1 1 1 1

no o rory M
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Ikeda would certainly have solved this with the Descartes circle theorem,
as in the solution to problem 12, chapter 6. With the powerful method of
inversion, the answer is easy to get. One inverts the inner and outer circles
to get two concentric circles. Then all the inverse circles in the chain must

/ /

have equal radii. The inverse circles v, 7', vy, and 7,
arectangle, and so l/r] + 1/1’8 = l/r4 + l/r“ by Iwata’s theorem, Theorem P,

must therefore lie on

in chapter 10.

The ]\/\alfaﬁi Problem

The Malfatti problem has had a long and tortuous history. It was first pro-
posed in the West in 1803 by the Italian mathematician Gian Francesca
Malfatti (1731-1807) who asked the following practical question:

Given a right triangular prism of any sort of material, such as marble,
how shall three circular cylinders of the same height as the prism and
of the greatest possible volume of material be related to one another
in the prism and leave over the least possible amount of material?*

One does not need to consider cutting columns from a block of marble,
and Malfatti’s problem immediately reduces to one of two dimensions:
How can you place three circles in a given triangle such that the area of the
circles is maximized?

Malfatti intuitively assumed that the maximum was attained by three
circles that are mutually tangent, as in figure 8.5. This question, how do
you inscribe three circles in a triangle such that they are mutually tangent
and each tangent to two sides of the triangle? has, much to everyone’s con-
fusion, come to be known as Malfatti’s problem, to which Malfatti provided
a solution.

To be sure, a number of later geometers, including Steiner himself in
1826, devised other proofs, verifying Malfatti’s solution. Strangely, well
over a century passed before in 1930 H. Lob and H. W. Richmond pointed
out that the Malfatti configuration was not always the solution to the prob-
lem as originally posed.® For example, in figure 8.6 the configuration of

*Gianfrancesco Malfatti, “Memoria sopra un problema sterotomico,” Mem. Mat. Fis. Soc.
Ita. Sci. 10, No. 1, 235-244 (1803).

®H. Lob and H.W. Richmond, “On the solutions to Malfatti’s problem for a triangle,”
Proc. London Math. Soc. 2, No. 30, 287-304 (1930).
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Figure 8.5. Malfatti’s solution to his own problem
was something like this.

Figure 8.6. The combined area of the circles
on the left is greater than on the right.

circles on the left—which are not mutually tangent—has a greater area
than the kissing circles on the right.

Indeed, in 1967, Michael Goldberg showed that the Malfatti configura-
tion is never the solution to the original problem.® As to what exactly is the
best configuration, this question was only laid to rest fairly recently, in 1992,
by V. A. Zalgaller and G. A. Los’. Their pr00f7 is rather involved, requiring
even a computer, but briefly they showed that there were fourteen different
configurations of circles-within-triangle to consider, then systematically
eliminated twelve of them, to be left with two very different ones, each of
which could take on the maximum value depending on the angles of the
triangle. The two configurations are shown in figure 8.7. Notice that neither
of them are the Malfatti configurations, as Goldberg predicted.

The story now has another chapter. The great Japanese mathematician
Ajima Naonobu (chapter 3) gave a solution to the problem: How do you
inscribe three mutually tangent circles in a triangle? in a manuscript ap-
proximately thirty years before Malfatti proposed it. The manuscript was

6Michael Goldberg, “On the original Malfatti problem,” Math. Mag. 40, No. 5, 241-247
(1967).

7V.A. Zalgaller and G.A. Los’, “The solution of the Malfatti problem,” Ukrainskii Geomel-
richeskii Sbornik 35, pp. 14-33 (1992); English translation J. Math. Sci. 72, No. 4, 3163-3177
(1994).
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Figure 8.7. The winning configurations. The
one on the left wins if sin (A/2) > tan (B/4).

A B A B

edited only the year after Ajima’s death as Fukyu Sanpo or Masterpieces of
Mathematics.

His solution was somewhat along the lines of problem 4 in chapter 6, but
longer and more complicated. Given a triangle ABC with an inscribed cir-
cle of radius 7 then according to Heron’s formula for the area of a triangle

Tz\/(s—a)(s—b)(s—c)’

S

where s is the semiperimeter (see also the solution to problem 1, chapter 6).

Let p=r—(s—a)+r’+(s—a)?, g=r(a—p),and ; = \/qQ — p2(s=b) (s —¢);

then Ajima shows

r = q+t ’
2(s—c¢)

Ty = ik ,
2(s — b)
nlb—(t/r+c)]?

3= P

2r - p)

where the 7’s are as shown in figure 8.5. Ajima also gave an example: If
a=>507, b= 375, and ¢= 252, then r, = 64, r,=56.25, and r, = 36. We leave
the details as an exercise for intrepid souls.

Other Well-Known Theorems

There are a number of other celebrated Western theorems, discovered as
well by the Japanese, that are somewhat more difficult to derive than the
above and we end this chapter by giving them a brief mention.

One of the most famous of these is Feuerbach’s theorem, after Karl
Wilhelm Feuerbach (1800-1834) who published it in 1822. To understand
Feuerbach’s theorem, one must first know something about the “nine-point
circle” (also known as the Euler or Feuerbach circle). Any triangle ABC has
nine “special” points. These are the midpoints of the sides, the bases (or
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Figure 8.8. Feuerbach’s theorem as it appears on a
sangaku. The sides of triangle ABC are extended as
shown. Three excircles of radii r, r, and r,; are drawn
tangent to the extended sides. A smaller circle of
radius 7is drawn that kisses all three excircles. A
large circle of radius Ris drawn circumscribing the
excircles. Find rand Rin terms of r,, 7,, and r,. Circle
ris the nine-point circle.

Cl/\ap'l'ev‘ 8

feet) of the three altitudes, and the midpoints of the segments from the
vertices to the orthocenter (the point at which the three altitudes inter-
sect). It turns out, implausibly, that a single circle can be drawn through all
the nine special points of the triangle!

What’s more, if one extends the sides of ABC, one can draw three exter-
nal circles that are tangent to the original sides. Feuerbach proved that the
nine-point circle is tangent to all three of these “excircles” as well as to the
incircle (inscribed circle) of ABC. The Japanese did not have the concept
of the nine-point circle, but the problem to find the radius of a circle tan-
gent to its three excircles was posted on an 1801 sangaku, which has disap-
peared; the solution was recorded in Nakamura Tokikazu’s 1830 Sais:
Sinzan. The circle (see figure 8.8) is the nine-point circle. The traditional
proof is far too involved to present here® but the result on the sangaku was

. (n+1n) @ +r)(y+n)
8(nry + 1515 +1377)

where ris the radius of the nine-point circle and r,, r,

0 and r, are the radii

of the excircles.

7Z\ somewhat less well-known theorem, but one that is very useful (in fact
sometimes used to prove Feuerbach’s theorem) was stated by John Casey,
apparently in 1857. This one concerns four circles tangent to a fifth circle.

8The full proof is given by Fukagawa and Pedoe, jJapanese Temple Geometry Problems,
pp. 111-114 (“For Further Reading: Chapter 6,” p. 339).
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In slightly less than its most general form, Casey’s theorem states that four

circles of radii r,, r.

9> T3, 7, are tangent to a fifth circle or a line if and only if

(AN

34 + ZL13ZL

e

12 14l93 =0,

where ¢, is the common tangent between circles 1 and 2, etc.’

In 1830 the theorem was stated by Shiraishi Nagatada as follows: For
four circles to touch a fifth circle, externally or internally, then

tiogla, + 1

12734 14t

93 = 13t

13724

Casey’s theorem is actually not difficult to prove with the tools already at
hand. In figure 8.9 let the segment AB from the point of tangency between
circles r, and 7, be d,,,
ments. Then, the preliminary result that we needed to prove the Descartes

with similar designations for the other like seg-

circle theorem tells us at once that

2
d2, = o onhy
12 — ’
(5 +m) (5 +15)
with similar expressions for the other d,. Notice that &, = kdi,ds,,
12,135 = kd3,d3y, and 13,13, = kdd2,, where

§ = (r +m) (5 + 1) (5 +13) (1 +r4)‘

4
Ts

t12

a1

Figure 8.9. Let AB=d
the other segments.

122

tay

9For a proof and more on the significance of the signs, see Paul H. Daus, College Geometry
(Prentice-Hall, New York, 1941).
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with similar labels for
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122 d23’ d34’

eral (an inscribed quadrilateral) in circle r,. Thus Ptolemy’s theorem

Also notice that the segments d and d,, form a cyclic quadrilat-

from above (or see problem 1, chapter 6) applies, and immediately gives

d12d34 + d41d23 = d13d24'

Since (ti].tkl)2 = k(dijdkl)2 for all values of i, j, k, [, Shiraishi writes

Ligly, + 1

12734 41t

o3 = ligl

13'04°
which, however, is not general.

More briefly, as already noted in problem 18, chapter 6, Euler’s 1778 for-
mula for a spherical triangle was posted on a sangaku about a quarter of a
century later, in 1804. Euler showed that the area of a spherical triangle ABC
on the surface of a sphere of radius r could be written as §= Er?, where

E 1+ cosA + cosB+ cosC
cos —

2 4cos(A/2) cos(B/2) cos(C/2)

In this formula, A, B, and C represent angles such that sin(A/2) = a/(2r),
sin(B/2) = b/(2r), sin(C/2) = ¢/(2r), with a being the straight-line seg-
ment opposite ZA, etc. Employing the identities cosA=1 - 2sin%(A/2),
cos B=1-2sin%(B/2), and cos C=1 — 2sin?(C/2), Euler’s formula becomes
S=Er?, where

_1=(1/2)[(a/20)° + (b/20) +(c/21)*]
V1= (a/20)2 1= (b/20)2 1~ (c/2r)2

identical to the the result of problem 18 (chapter 6).

cos E

Readers who have worked through problem 24 in chapter 5 will also
know that the problem of finding the volume cut out of a sphere by two
parallel cylinders—known in the West as the solid of Viviani, after Galileo’s
student Vincenzio Viviani (1622-1703)—was written down in 1844 by
Uchida Kytumei (chapter 9) in his 1844 Theory of Integrations. There is little
to add to except to say that Uchida’s complicated method bore little resem-
blance to anything we would try today.

Finally, in 1896, Joseph Jean Baptiste Neuberg published a problem in
the French mathematics journal Mathesis.! Here is a translation. Neuberg
did not accompany his problem with a diagram; we will be merciful (?):
Given a triangle ABC, let R, 7, v, 1, v be the radii of the circumcircle O, the

incircle 7, and the three excircles I, I, I, respectively.

b ¢

10, Neuberg, Mathesis, p. 193, problem 1078 (1896).
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Figure 8.10. Neuberg’s problem.
The excircles, I, I,, I are drawn
in solid lines. AT I,1 is not drawn

but its circumcircle is the dotted

line through 7, I, I.. The radii of
AABC s incircle and circumcircle
are rand R; the circles are drawn
in dotted lines. The radii of the
excericles are 7, 7, and r. The
incircle of AA, B, C,, also dotted, is
marked 1.

C1

The fourth tangents common to pairs of the excircles /, I, I form a tri-

@y
angle A B,C,. Show that the center of the incircle of triangle A,B,C, is the
same as the center of the circumcircle of triangle 7 I,/ and that the follow-
ing relation holds:

r+r, 4+

2

The result 2r, = r+r + r,+ r was presented in 1803 by Yamamoto Nori-

n=2R+r=

hisa (?-?) on a sangaku at the Echigo Hakusan shrine, Niigata prefecture.
The tablet, subsequently lost, was recorded in Nakamura’s 1830 manuscript
“Saishi Shinzan.”

Although Neuberg’s problem is itself of little consequence, along with
the other theorems discussed in this chapter, it probably does serve to sup-
port the true mathematician’s conviction that mathematics in a parallel
universe would be the mathematics we know.



Plate 9.1. The area of a circle of diameter dis S= (n/4)d?= (nd/2) x d/2. Here, in
an illustration from the Jinko-ki of 1778, a circle is sliced into a collection of
sectors and thus changed into a rectangle with sides d/2 and 7d/2. Consequently,
the area of the original circle is S=wd/2 x d/2 = (n/4)d>. Approximating the
value of wand calculating the area of circles was central to the Enri concept.
(Collection of Fukagawa Hidetoshi.)
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The Mysterious Ennri

The circle principle is a perfect

method, nevenr befoy*e known in ancient

or in modewrn times. Jtis a method

that is eternal and w\c]/\amge—

able . .. Jtis the true method . . .
—Hachiya Sadaaki," as quoted by
Smith and Mikami

We devote the final two chapters of Sacred Mathematics to matters of tech-
nique. Chapter 9 is dedicated to providing an answer, insofar as there is
one, to a question that has certainly occurred to readers who have at-
tempted certain of the more difficult problems: Given that wasan did not
include a fully developed theory of calculus, how did traditional Japanese
geometers solve the maxima-minima problems, which require differentia-
tion, or solve problems requiring integration? In the solutions to chapters
5 and 6 we have given an idea of how the Japanese approached integration,
although we have said nothing about differentiation. Here we tackle both
matters explicitly.

Diﬁeren’ria’rion

The question of differentiation in some sense is more difficult than that of
integration because, although traditional Japanese mathematicians wrote
volumes on integration techniques, they were virtually silent about how
they took derivatives. One thing is certain: the Japanese did not have the

'Sometimes Hachiya Teisho.
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concept of differentiation as we know it. In no traditional manuscript do we
find the fundamental formula for the derivative:

F(x) = lim 5O (@),
€ €

—0

Without this concept it is difficult or impossible to develop a formal theory
of differentiation. Perhaps for this reason in the wasan differentiation was
confined to finding the maximum or minimum of functions.

How did the traditional geometers do this? For quadratic functions, pa-
rabolas, one knows without calculus that the maximum or minimum is at
the vertex of the parabola, and so for functions of the form y= ax®+ bx+ ¢,
one can write down the answer: x_, . =-b/2aand y . . =y(x o).
By induction, one can do this for a few polynomials, y= f(x) = q,+ a;x+
ayx* + a,x’ + - - - and postulate that the extremum of the function will be
at 0= a, +2a,x+ 3a,x*+ - - - . It is certainly the case that the traditional
Japanese geometers did not differentiate nonpolynomial functions.

For example, in problem 44, chapter 4, we obtained an expression for
the area that we wanted to maximize, S(f) = 2tva? —t2 —2¢t2. From that

point on we gave a modern solution:

2
S'(t) = 2va? — 12 — 2 4,
Aa? -2
and 8’ =0 implies a? —2t% = 2t\a? — (2.
The Japanese geometers, however, could not differentiate
S =2tva? —t* =212 directly. Instead they probably did something like
this:
S =2ta? — 12 — 242, (1)
(S +212)2 = 412(a® — %),
S2 + 4812 + 41* = 4a?t? — 44,
288" + 4(St? + 2St) + 1613 = 8a%t — 1643,
If at the maximum S’ =0, then
S =a?%- 442,
2Va? —12 22 = a? — 442,
a®> — 21> =2tva® —t?, (2)
as before.
Unfortunately, the traditional mathematicians wrote down only steps

(1) and (2), and we have no evidence how they got from one to the other.
For polynomials, the product rule (S£Y = §t+ 2S can be established with-
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out too much difficulty, but how they extended it to other functions,
whether they just assumed it was true, is nowhere made explicit. The above
sketch, then, is our best guess and it will have to suffice.

Toward J ntegration

At the outset of the book we spoke of how the traditional Japanese concept
of integration is bound up with the Enri, usually translated as the ineffable
“circle principle.” During the early days of wasan—we gave abundant evi-
dence in chapter 3—]Japanese mathematicians were deeply concerned with
approximating 7, which is virtually inseparable from the essential concept of
“circle.” Such calculations were facilitated and spurred on by the soroban, and

Plate 9.2 Early Enri calculations were largely concerned with finding the value of 7. Here is an
illustration from Takebe Katahiro’s 1710 book Taisei Sankei, in which he used a 1,024-sided regular
polygon to approximate 7 as 7= 3.141592653589815383241944 (see chapter 3). (Collection of
Fukagawa Hidetoshi.)
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the term Enri initially referred to such computations. A samurai comput-
ing 7, when asked what he did while not at his government job, might have
replied that he was engaged in Enri calculations. It was only later that the Enri
took on the connotation of finding areas and volumes by definite integration.

The transition from calculating 7 to finding areas and volumes took
place over centuries. For simple geometrical figures, of course, it is quite
easy to find the area, and no calculus is required. A curious example of how
to compute the area of a circle is shown in plate 9.1 from the 1778 edition
of the finko-ki. While it tacitly assumes that you already know the formula
for the area of a circle, it does contain the notion of slicing up a figure,
which is crucial in the calculus approach to computing areas.

An important step in the direction of calculus was taken by Takebe Kata-
hiro (chapter 3). One of the most important problems in traditional Chi-
nese and Japanese mathematics was to find an arclength [/ of a circle in
terms of its radius and k, the length of the sagitta (figure 9.1). (“Sagitta,”
from the Latin “arrow” is a trigonometric function unfortunately not much
in use nowadays. Figure 9.1 gives an idea of where the word comes from. It
is also known as the versine, versin 6 = 1 — cos 6.) Takebe was the first Japa-
nese mathematician to devise a successful method, which he did by intro-
ducing the notion that functions could be expanded in infinite series.” This
was an original contribution and one not imported from China.

Takebe does not fully explain his methods, but for a circle with 2r= 10
and sagitta k= 107" he found, by enormous computational ability and the
soroban, (1/2)?=0.00001000000333335111112253969066. From this calcu-
lation, he deduced—apparently by trial and error—the expansion (//2)? =
k+ (1/3)k*, and after further calculation decided on the infinite series
(l/2)>=k+ (1/3)k*+ (8/45)k> + - - - .

Todaywe would probablydo Takebe’s calculation by taking £ =7 (1 — cos ) =
2rsin?(6/2), which implies that [/2=7r 6 =2rsin~!4/(k/2r), and then
expanding the inverse sine function in a Taylor series as in Eq. (5), below.

If, like Takebe, one takes the length of the sagitta to be the radius of the
circle, then one immediately has a formula for 7%, which makes it clear why
such computations fell under the circle principle.

?Readers unfamiliar with series expansions should know that most functions f(x) can be
approximated as the sum of powers of x. For instance ¢*=1+ x+ x?/2! + x%/3! + - - - and
sin@=0-6°/31+0°/5!-6/7! ... Generally, the more powers of x—or in the latter case
6—included, the more accurate the approximation. Such series are usually referred to as
Taylor series or Maclaurin series. To take the derivative of a function, one can differentiate
the series term by term or, conversely, one can integrate a function by integrating its series
representation term by term.
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>

l Figure 9.1. In this figure, /is the full arclength subtended by
the chord. The segment /% is the full chord. For a unit circle,
k=1 - cos@is termed the sagitta.

Matsunaga Yoshisuke, who calculated more digits of 7 than any other
traditional Japanese mathematician (chapter 3) employed Takebe’s meth-
ods. In his book Hoen Sankei of 1739, Matsunaga presented many numerical
methods for use with the soroban, in other words computer programs.
These recipes took the form of Takebe’s series expansions. The following
problems are typical of what traditional Japanese mathematicians called
Enri calculations.

Problem 1
We are given a circle of diameter 1 and a segment with arc /, chord 7, and sagitta

k=1/2-.1/4-h?/4. Confirm that the following series representations are correct:

(1) kin terms of [:
2 4 6 8
oyt BB
2l 41 ol 8
where n!=1-2-3....n.
Originally, Matsunaga wrote this in a somewhat more complicated way:

k=Ay— A +A,— A+ A~ A, ...

where A= 12/4; A = (IB/12)A; Ay = (I?/30)A;; Ay = (I*/56)A,; - - -.
(2) hin terms of [:

Matsunage wrote this series in a way analogous to the previous, but we omit it.

Modern solutions can be found on page 311.
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As already remarked, Takebe evidently discovered his series by trial
and error, not to mention hard soroban handling. The formal concept of
the Taylor series had yet to be invented. A more theoretical approach was
introduced by Wada Yasushi,® who was born samurai in 1787 into the Ban-
syu clan of Hyogo province. Later he moved to Edo to become a Master of
Mathematics in an astronomy institute. As we shall see momentarily, Wa-
da’s main work was on definite integrals. He wrote sixty-six manuscripts
but they were all destroyed by fire. Anxious to help his friend, and an-
gered that other mathematicians were plagiarizing Wada’s results, Koide
Kanemasa (1797-1865) published the Enri Sankei (1842), or Mathematics of
the Enri, making clear that it was Wada’s work. Wada’s sole passion was
mathematics and he disdained honors, with the consequence that he
spent his entire life in poverty, dying in 1840.

In the Enri Sankei, or the Mathematics of Enri, Wada deduces the expan-
sion of V1—x by assuming that v1—x = a, + a,x + asx? + asx® + - - - . Squar-

ing both he gets 1—x = aj +2aya,x + (ai +2aya5)x* + - - -, which implies
a,=1,a,=-1/2,a,=-1/8, a,=-3/48, ..., or
1 1 3 15 105
Jox =1 o a2 2y 22 pa 202 5 3
TEITRYTRY Tus™ Tasa” Tssa0 &
in agreement with the binomial expansion. Similarly,
! =l+lx+§x2+£x3+ﬁx4+945 x4 (4)
1-x 2 8 48 384 3840

Defi nite JmLeg ration

With such expansions, Wada and other Japanese mathematicians were in
a position of being able to calculate various definite integrals. Their basic
procedure was essentially what every calculus student learns when first cal-
culating the areas under curves y= f(x): Divide the domain of integration
from 0 to x, into small subintervals Ax= (x,)/N; approximate the area un-
der the curve as A =X, f(x,)Ax, and let N—eo. The difficult part of this
procedure is evaluating X f(x ). Taking the function f(x) = x% as a standard
example, we let x = (x;) - n/N. Then

N N n? x; N
= 2 = — =1 2
A_nzzl'anx_nzzl'xf N Ngnzzfn .

3Sometimes Wada Nei.
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Figure 9.2. In this standard calculus example,
the function is y= x?. The interval along the
x-axis between 0 and x, the final value of x,

is divided into subintervals each with width
Ax= xf/N, where Nis some large integer. An
intermediate point x_is given the value

X, =nAx= nxf/N, where n < Nis another

integer. As explained in the text, taking the
X limit N—eo leads to the definite integral of x°.

AX

But from chapter 2, problem 4-7, we know how this series sums, and so

P (N_f‘ N E}
N3\ 3 3 6
Taking the limit N—eo, yields the well-known result A = X?/ 3.

Calculus students, though, quickly learn more efficient methods of eval-
uating integrals. Employing the universal method of substitution, we usu-
ally bring complicated functions into polynomial form, which is then easy
to integrate. The traditional Japanese geometers did not go that far. Re-
gardless of the function, they expanded it in a series and calculated the
definite integral as we have just done. Wada’s Enri Sankei, for example, in-
cludes many tables, the Enri Hyo* of definite integrals of irrational func-
tions. Wada’s near contemporary, Uchida Kytimei (?—1868), made a detailed
study of such integrals. It is worth saying a few words about Uchida. Like
most of the other mathematicians we met earlier, Uchida was a samurai,
from the Hikone clan in Shiga province, and he eventually become math-
ematics teacher to the lord of the clan himself, Ii Naosuke. Uchida’s main
work is the Sanpo Kyuseki Tsu-ko of 1844, the five—volume Theory of Integrals,
from which we have already taken solutions to problems 22 and 23 in chap-
ter 5 and problem 19 chapter 6. Here are further examples of definite
integration from the Enri Sankei and the Sanpo Kyuseki Tsu-ko that employ

the expansion of v1-x? and 1/vV1- x.

*Literally “folding tables,” from the Japanese term for integration.
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Plate 9.3. These Enri tables by Wada Yasushi are from his Enri Sankei 1842 manu-
script. The columns on the right-hand page are series for the circumference of a
circle, and series for the area. (Japan Academy.)

Problem 2
From figure 9.1, find the length /in terms of rand the chord length A.

Uchida’s Original Solution: The method of solution is similar to several other problems
we have encountered, especially problems 22-24 in chapter 5. Here, let & be the half-

length of the chord. The infinitesimal arclength along the circle is /dx? + dy?. We
integrate along y. Then

[=2 _[:1/1 + (dx/dy)? dy

From similar triangles, as in figure 5.39 or 5.41 of chapter 5, we find dx/dy =—y/x. Along
the circle x? = > — y2. Eliminating x, making the substitution y= /¢ and expanding the
denominator by Eq. (4) gives

! 1
1=2 | ———di
fo J1—=(ht/r)?
= QhE [1+(1/2) (ht/r)% + (1-3/2-4) (ht/r)* + (1-3-5/2-4-6) (ht/r)0 + - - - , Jd
= Oh[1+(1/2-3) (h/r)2 +(1-3/2-4-5) (h/r)* +(1-3-5/2-4-6-7) (h/r)6 + - - -].
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In modern notation we would write this as

[ =2r arcsin(h/r) = 2h|:] + 21—3(]1/7)2 + (h/7)4 1 (h/7)6 + .. .}

2-4 2:4-6-7
or, with x= 1/,
1 . 1-3 1-3-5

x3 + x® + x7 +
2-3 2:4-5 2-4-6-7

[ =arcsinx = x +

Two decades earlier, in 1822, Sakabe Kohan (1759-1824) had employed
the same procedure to to find the length of an ellipse, a result he wrote
down in his manuscript Sokuen Syukai, or “Circumference of Ellipse.”
Sakabe was the first Japanese mathematician who succeeded in doing this.

Problem 3
Here are three of Wada’s expansions from plate 9.3. Two are for the area of a circle

and one for the circumference. Confirm their correctness.

(I)A d2(1_1+l_l+l_...]’

3 5 7 9
@ A=az1- 11 3 15 106
2-3 5-8 7-48 9-384 11-3840 ’
3) C=2d|1+ + 3 + 15 + 105 + 95
2-3 5-8 7-48 9-384 11-3840

Solutions are on page 311.

As a final example of the Enri, also from Uchida’s Sanpo Kyuseki Tsu-ko, we re-
turn to problem 19 from chapter 6, one of the most difficult problems in the
wasan. We were to find the surface area cut out of an elliptic cylinder by the
sectors of two right circular cylinders. The problem resulted in the integral

S =4d\Dd I 172 1= /Dy \/1 (I- bz/aQ)(dQ/aQ)tht’

1-(d?/a®)t?

which we evaluated numerically. Although the author of the problem, Mat-
suoka Makota, did not write down his detailed calculations on the sangaku,
he evidently did much the same but in a fashion more suitable for soroban
calculations. The integrand contains three square roots, two of which are
of the same form. We use the binomial expansions above for JI-x and

1/41-x, applying the first expansion to the two square roots in the
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numerator and the second expansion to the square root in the denomina-
tor. Thus, we are multiplying together three infinite series. This results in
calculations too lengthy to reproduce here, but Makota did summarize
them on the tablet. First, he writes the three infinite series in terms of the
following recursion formulas:

(1) With s=1 — b?/a?, aand b as above, let

1

0 _E(I_S)’

c =l(3+s)c

2= 1
1 1

€3 = 6(5 + 3s)co — (gj ¢y,
1 2

¢y E§(7+53)63—(Z)sc2,
1 3

¢s EE(9+75)C4—(g)scg,

(2) With w= d?/a® and ¢ = yD? — (D —2d)?, let

B, = ﬁ,
D
B, = wB,,
By = wB,,
B, = wB,,

=
[
Iy
=
=
i
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Then the final result, written on the tablet, is given as
S=A+A +A+A+ A+
We leave it an an exercise for the reader to fill in the details, but the re-
sult is correct.

Solutions to Selected le\ap’rev‘ 9 Problems

Problem 1
(1) In this case we do not have a unit circle, but rather r=1/2. Thus,

from figure 9.1, versiné = k= r— x=r(1 — cos 6), and [=2r6= 6.
Expanding cos 6in a Taylor series immediately gives

2k = 2r(1 —cos 0)

2 4 6 8
:2{1_(1_0_+0__9_+0_...ﬂ
20 4 6! 8!

A
20 4 68

(2) Since his the full chord, 2/r=2sin 6. As in part 1, we expand
sin 6in a Taylor series or, equivalently, differentiate the series for cos 6.

Since [= 6, we have at once

3 75 g7
h:sinl:l_l_+l__l_..._
3 57
Problem 3
(1) The area should be A = wd?/4. We recognize the quantity in
parentheses as tan'x=x— x*/3+ x°/5 - x"/7+ -, for x=1.

Arctan(1l) = /4. Therefore we regain A= m d*/4.
(2) The area of a unit circle is

A= 4j01 dx'[:m dy = 4]01 J1- x%dx.

Use the binomial expansion given in equation (3) to get

V-2 =1-(1/2)x2 — (1/8)x* — (3/48)x6 — - - -

and integrate both sides. Multiply by d?/4 to get Wada’s result.

(3) This result follows from problem 2 in the text. There we found [
by expanding 1/V1-x? to get [=2rarcsin(h/r). Notice that the series
in Uchida’s solution is the one we are asked to confirm. Merely substi-
tute (/1) =1 and multiply by 2 to get C= md.



Plate 10.1. Traditional Japanese geometry problems typically involve multitudes
of circles within circles, such as those shown here or in chapter 6. Traditional
Japanese mathematicians would have solved them using the methods of chapter 6,
but they are more easily solved by the technique of inversion, the subject of this
chapter. The original illustrations here are from Fujita Kagen’s Shinpeki Sanpo of
1789. The problem, which asks you to show that T, = 1/7, is from a lost tablet hung
by Kanei Teisuke in 1828 in the Menuma temple of Kumagaya city, Saitama
pefecture. We know of it from the 1830 manuscript Saishi Shinzan or Collection of
Sangaku by Nakamura Tokikazu (?—1880). (Japan Academy.)
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Introduction to Inversion

The world needs to be turned mpsicle
down in order to make it riglm‘ side up
—Bi”y Suw\clay, possiHy

Jn chapter 6 we encountered several problems with multiple circles
in contact with one another. A striking example was problem 12, pro-
posed by Hotta Jinsuke and hung in 1788 at the Yanagijima Myokendo
temple of Tokyo. Yoshida’s original solution of Hotta’s problem deployed
the Japanese equivalent of the Descartes circle theorem, but this prob-
lem and many similar ones can be solved more easily by an extraordi-
narily powerful and simple technique known as inversion, which was
discovered in the West independently by several mathematicians between
1824 and 1845, and which was unknown to the practitioners of tradi-
tional Japanese mathematics. Roughly speaking, inversion is a way of
turning figures inside out; points that were inside the figure become
points outside the figure, and vice versa. Certain problems involving cir-
cles that at first glance seem impossible are quickly vanquished in this
inside-out space, after which one “reinverts” back to the original space to
get the final result.

Inversion can only be called “way cool,” and although it is simple
enough to be mastered by high school seniors, it is evidently no longer
taught in the United States except in some advanced undergraduate
mathematics courses. Therefore in this chapter we give an introduction
to the technique, including enough theorems to solve the problems in
the book. The proofs are fairly standard; and interested readers can find
variations on them in any of the references in the “Further Reading” sec-
tion. Once the theorems are in hand, we employ them to solve Hotta’s
problem.



314

Chapfev‘ 10

A tangent to Tat A

Figure 10.1. Inversion is defined with respect T P P'
to the circle Z. The points Pand P’ are
termed inverses. The point T'is termed the

center of inversion.

J nversion is an operation generally defined with respect to a circle. Sup-
pose we are given a circle X with radius k and center T (see figure 10.1).

P and P’ are two points in the plane containing X. Notice that by construc-
tion P and P’ lie on the same line. If the lengths TPand TP’ in the figure are
such that

TP- TP =k, (1)
we say that P and P’ are inverses. In other words, when the radius % is the
geometric mean of TPand TP, Pand P’ are inverses. Equivalently, we can
say that the point Phas been inverted with respect to the circle . Geometri-
cally, the meaning of inversion can easily be seen from the figure. By con-
struction, triangles TAP and TAP’ are similar, so

P k

kTP

or TP - TP’ = k?, as already stated.! As we will show later, when solving prob-
lems we usually set k= 1. Then we have simply 7P’ =1/TP and it becomes
clear why Pand P’ are termed inverses. Points that are inside X are thrown
outside and vice versa.

Not only individual points but entire figures can be inverted. That is, sup-
pose we have some figure [ that we wish to invert with respect to X. Each
point Pon Finverts to a point P, with the result that the entire world inside
Y is tossed outside and the reverse. The question is, What sort of figure is F'?
Except in diabolical situations, the figure F'to be inverted is a straight line or
a circle itself, so the question becomes, what is the locus of points described
by the inverse /" of a line or a circle F'? In order to answer this question, and
solve Hotta’s problem, we need several theorems about inversion. For conve-
nient reference, we list them first and prove most afterward.

IReaders who have studied complex variables will recognize inversion as a type of con-
formal transformation.
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Basic Theorems about Jnversion

Suppose we have a circle X, as shown in figure 10.1, whose center 7' is called
the center of inversion. Assume we also have a straight line / that we wish to
invert with respect to . Then:

Theorem A
A straight line passing through the center of inversion inverts into
itself. A straight line not passing through the center of inversion in-
verts into a circle that passes through the center of inversion.

The former situation is shown in figure 10.1; the latter situation is illus-
trated in figure 10.2

4 Figure 10.2. Theorem A. The line / does not pass
’ through the center of inversion 7. Its inverse with
respect to circle X is the small circle I, which does
pass through T.

Now assume we have a circle Cand that we wish to invert C with respect to
2. Then:

Theorem B
If circle C does not pass through the center of inversion 7, then C
inverts into another circle C".

An example of such a situation is shown in figure 10.3.
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Figure 10.3. The circle C does not pass through the center \ ,
of inversion T and so its inverse C’ is also another circle, ‘\ /
. /
which does not pass through 7. AN L

Theorem C
If circle C does pass through the center of inversion T, then C in-

verts into a straight line that does not pass through the center of inver-
sion. (This is the converse of theorem A.)

Furthermore, if for simplicity we take 7 to lie at the origin (0, 0) of a
coordinate system, then the equation of the line is

—ox’ 2
=& +k—.
Iz

Here, (g, /) are the coordinates of the center of Cwith respect to 1. Primes

denote coordinates in the inverted system. An example of such a situation is
shown in figure 10.4. Note that the equation is of the usual slope-intercept
form y' = mx’ + b, with m=—g/fand b= k?/2f.

Figure 10.4. The circle Cpasses through

the center of inversion 7, which is
located at (0, 0). The center of Cis
located at (0, 1), so by Theorem C the
inverse C’ is a horizontal line with
equation )’ = k2/2. If the radius of £ (not c
shown) is taken to be 1, which is

0.9

generally allowed, the equation becomes 0,1/2) c

simply y' = 1/2, as shown on the right.

T=(0,0 T=(0,0)
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Theorem D
If ris the radius of C and 7’ is the radius of C’, then rand »’ are re-

lated by
, k?
r’ = 7,
(a* —r*)|

where dis the distance between T and the center of C.

Theorem E
If Lis the length of the tangent from 7 to the inverse circle C’, then

rL? = k2.

The geometry is somewhat clarified by Figures 10.6 and 10.10 below.

Theorems A-E figure in virtually all inversion problems and, what’s more,
theorems B-E are all that is needed to solve Hotta’s problem. The reader
may first want to go through the proofs of those theorems, and then peruse
the additional theorems listed below as they come up for an occasional ad-
vanced problem:

Theorem F
Points on the circle of inversion are invariant.

Theorem G
Concentric circles whose center is the center of inversion invert

into concentric circles.

Theorem H
The center of the inverse circle is not the inverse of the center of

the original circle.

Theorem K
If two circles are tangent to each other at 7; they invert into parallel

lines. If two circles are tangent to each other at a point P that is not
the center of inversion, then the inverse circles must be tangent to
each other at some point P’. Points of tangency are preserved.
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Theorem L
Inversion preserves angles (Thatis, if two curves intersect at a given

angle, their inverses intersect at the same angle.)

Theorem M
A circle, its inverse, and the center of inversion are colinear.

Theorem N
By the proper choice of the center of inversion 7, two circles that
are not in contact can be inverted into two concentric circles.

Theorem P (Iwata’s theorem).
If four circles can be inverted into four circles of equal radii, 7,

whose centers form the vertices of a rectangle, then
1 1 1 1

n nB % n

>

where 7, 7.

9> T3, 7, are the radii of the original circles (see figure 10.15).

pv‘oofs of Tl/\eov‘ems 7Z\—€

To prove the basic theorems is not difficult. The first part of theorem A
follows directly from the definition of inversion: We may take a line pass-
ing through the center of inversion to be the horizontal line drawn in fig-
ure 10.1. Under inversion, points P and P’ are merely swapped, as are all
the other points and their inverses on the line, but by construction all of
them remain on the same line. Thus the line inverts into itself. The sec-
ond part of theorem A is proved by figure 10.5. Therefore, we have again

Theorem A
A straight line passing through the center of inversion inverts into

itself. A straight line not passing through the center of inversion in-
verts into a circle that passes through the center of inversion.
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Figure 10.5. Proof of theorem A. Take points Pand Q on line L Their inverses P’
and Q' lie on straight lines through the center of inversion 7. By definition of
inversion, we must have TP - TP’ = k* and TQ - TQ' = k?, which implies TQ/TP =
TP/TQ'. Together with the fact that angle T'is common to both ATPQ and ATP'Q)’,
this means the two triangles are similar, and so ZTQ’P’ is a right angle. Point Q on
{was chosen arbitrarily, and so, for any Q, Q" must be such that ZTQ’P’ remains a
right angle. A basic theorem in geometry says that any angle inscribed in a
semicircle is a right angle, so the locus of points traced out by Q' must be a circle.

Thus the inverse of a straight line not passing through the center of inversion is
a circle that passes through the center of inversion. The converse clearly holds (see
figure 10.7), so the inverse of a circle passing through the center of inversion is a
straight line that does not pass through the center of inversion.

Theorem B states that the inverse of a circle not passing through the cen-
ter of inversion inverts into another circle, while Theorem C states that a
circle passing through the center of inversion inverts into a straight line (the
converse of Theorem A). The basic proofs can be carried out by construc-
tion as in figures 10.6 and 10.7. However, it is often useful to have the actual
equations for the original circle and its inverse. For simplicity, we take the
center of inversion 7 to lie at (0, 0), the origin of the coordinate system.
This, then, is also the center of X.

Now, the equation of a circle Cwith center (g, /) can be written

x4+ 92— 2gx—2fy+ ¢=0, (2)
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Figure 10.6. Proof of theorem B. This is similar to the proof of theorem A. Take
points P, Q, and Ron circle C. P, the inverse of P, lies on the line 7P, while Rand
R’ lie on TR. By definition of inversion, TR+ TR = k2and TP- TP = k?, which
implies TR/ TP’ = TP/TR'. Hence, as in the proof of theorem A, ATPRand ATP'R’
are similar, with ZTPR= ZTR'P’. By the same argument, ATQRand ATQ'R’ are
similar with ZTQR= ZTR'Q’ (marked f3).

However, ZTPR is an exterior angle of APQR and so TPR= 0+ 3= TR'P..
Moreover, we see from the diagram that ZTR'P’ = f+ ¢. Therefore ¢ = 6. But Ois a
right angle, and once again the locus of points traced out, this time by R’, must
be a circle. The proof assumes that 7P is nonzero, or that circle C does not pass
through 7. Notice that in this proof and the previous, the radius of inversion &
was not important. For this reason one can often set k= 1.

2r

1/2r 1/q
T T

Figure 10.7. Proof of theorem C. This is the converse of Theorem A. We know
that ZTQPin the circle Con the left must be a right angle. The circle of inversion
Y is not drawn. If we take k=1 for simplicity, then by definition of inversion

TP- TP’ =1 and since TP is the diameter of C= 21, then TP’ = 1/2r. If the dis-
tance TQ = ¢, then TQ" =1/¢. Q’ lies along the same line from T'as Q and so the
marked angle does not change. Also notice TP"/TQ’ = q/2r= TQ/TP. Thus
triangle TPQ on the left is similar to triangle TQ'P’ on the right, and Z7P'Q’ must
be a right angle. Thus circle Cinverts into a straight line parallel to /at a distance
of 1/2r.
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y
d’= g%+t
\> ,
<1, 7
7
/
7
X

T=(0,0) . . . .
Figure 10.8. A circle with center (g, /). The distance
from the origin to (g, /) is d.

or equivalently, upon completing the square,

(x=@2+ (- =g+ ~-c (3)

This is the more usual form, where g? + 2 — ¢=r? is the radius squared of
C. By the Pythagorean theorem g2+ f%=d? is the squared distance from
the origin 7'to the center of C, as shown in figure 10.8.

From either of the above expressions we see that, if x=y=0, then ¢=0.
Thus ¢= 0 implies that the circle passes through the origin T; ¢ # 0 implies that
the circle does not pass through 7.

We now find an equation for the inverse figure of Cand show that this is
a circle C". The easiest way to do this is to write the coordinates of a point P
on Cas

x=scosB, y=ssinb, (4)

where 0is the angle shown in figure 10.9.

Figure 10.9. The point Pon circle Chas
coordinates (x, y) = (s cos 6, ssin 0). Because P
and its inverse P’ lie on the same line, P’ has
coordinates (x, y) = (s" cos 6, s’ sin 0).
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As seen in the diagram, P’, the inverse of P, lies along the same radius of £
as P and so it shares the same angle 6. Hence the coordinates of P’ must be

x' =5 cosB,y =ssin6, (5)
where s is the distance from 7T to P’
Now, divide equation (4) by equation (5) to get
s ’ s ’
x==x, y=—y. (6)
s s
But by the definition of inversion ss’ = k%, so s = k?/s. Inserting this relation-
ship into equation (6) yields

k? , k?

x=——7-x", y=
x’2+yl2 y

4
X,Q +y;2 y 4

’2 = ¢ by the Pythagorean theorem.

where x? + y
Plugging these expressions into Eq. (2) and multiplying through by

(x"% + y'?) gives
c(x2+ y'2) — 2k2gx — 2K2fy + k* = 0. (7)

When ¢# 0, the condition that circle C does not pass through 7; we can
divide through by ¢ to get

2 2 4
W WK, )

4 4

x’2 + y"z —

Notice now that equation (8) is of exactly the same form as equation (2).
Thus we have, once again,

Theorem B
If the circle C does not pass through 7, then inversion maps C into

another circle C". Moreover, the center of this circle is at (ng/ c, ka/ c).

If ¢ does equal zero, then the circle Cpasses through Tand equation (7)
immediately gives

Theorem C
If the circle C does pass through 7; then inversion maps C onto the

straight line

— oy’ 2
- +k—.
foo2f

y



Introduction to Inversion

Theorem D is easily derived by referring to figure 10.6. The radius 7’ of
the inverse circle is (7P — TQ’)/2. From the definition of inversion we can
write this as

Wzk_?[L_L]:ﬁ(M} (9)
olrp 1Q)” 2\ 1P-1TQ

However, we also have r= (TQ - TP)/2, and so if we call d the distance from
T to the center of circle C, equation (9) can be written as

, k?
r’ = T
(d=r)(d+7)

Recognizing that d may be greater or less than 7, but that »¥ must always
be positive, we recast this as

Theorem D

r’' = —k2 r
=

This result may also be obtained analytically by completing the square in
equation (8) and writing the equation of the inverse circle analogously to
equation (3):

2,2 2 £\? 2,2 2,\2 24
(x'_k_g] +(y'_ﬂ] :(k_g) +(ﬂj K
¢ ¢ ¢ ¢ ¢

We leave it as an exercise to show that this expression also leads directly
to theorem D. However, here is a clear case where geometric reasoning
saves work over algebra, as in the previous proofs.

Theorem E is proved in a manner similar to theorem D. Figure 10.10
depicts the inverse circle shown in figure 10.6 with the tangent L drawn in.
As in equation (9) we can write

323

\ P!
T Q Figure 10.10. The inverse circle C’ from figure 10.6

with radius . An elementary theorem says that

2=TP - TQ.
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oy - TP =TQ) (10)
TP’ - TQ’

However, TP’ — TQ' =2y, and a basic result (“the secant-tangent seg-
ments theorem”) from first-year geometry states that 7P - TQ' = I*. Thus
equation (10) immediately gives

Theorem E

py‘oofs of Selected Theorems 1P

As already mentioned, theorems B-E are all that are needed for basic in-
version problems, and readers interested in the solution to Hotta’s prob-
lem can skip this section. However, a number of other facts and theorems
arise in solving some of the remaining problems in chapter 6—and ad-
vanced inversion problems in general. Theorem F, that points on the circle
of inversion are invariant, follows trivially from the definition of inversion,
but it is useful to bear in mind when constructing diagrams. Theorem G,
that concentric circles whose centers are the center of inversion invert into
concentric circles, is likewise trivial. Many students mistakenly assume
that the center of the inverse circle is the inverse of the center of the
original circle. This is not true, as theorem H states, but we do not prove
it here.

The first part of theorem K, that two circles tangent to each other at the
center of inversion invert into parallel lines, follows directly from theorem
C and figure 10.7; we leave the few details as an exercise for the reader. The
second part, that if two circles are tangent at a point P not the center of in-
version, they must be tangent at some other point P’ is also reasonable; af-
ter all, the point of tangency is a single point and it can only be inverted to
a single destination P".

For one or two of the problems in chapter 6, it is also important to keep
in mind theorem M, that the centers of the original circle, the inverse and
the circle of inversion are colinear, but this is also fairly obvious and we do
not prove it. We, however, do prove theorem L, that inversion preserves
angles. For the proof see figure 10.11
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Figure 10.11. Proof of theorem L. This
diagram is meant to go with the proof of
theorem B, figure 10.6. Suppose a curve C
cuts the radial lines 7P and TR at points P
and R. Curve Cis inverted into curve C’,
which cuts TPand TR at P’ and R’ The
angle Cmakes with 7P at Pis 6, the angle
between TPand C’s tangent ¢ (dash-dotted
line) at P. Similarly, the angle C” makes with
TPis given by ¢. We already proved for
theorem B that under inversion triangles
TPR and TP'R’ are similar; hence or= f3. As
R moves toward P, the side of the triangle
PR becomes coincident with tangent ¢, and
so in this limit o= 6. Similarly, = ¢. Hence
in the limit, ¢ = 6, and the angles Cand C’
make with 7P are the same. If there is a
second curve, call it S, that intersects TP at
Patan angle §, then one merely repeats the
analysis for S, finding that {is preserved
under inversion. The angle between the two
curves {— 6, will thus also be preserved.

Theorem N was also required for one of the problems in chapter 6.
A totally rigorous proof requires a considerable number of preliminaries.
However, with one or two shortcuts we can be quasi-rigorous.?

Figure 10.12 shows several members of a nonintersecting family of cir-
cles.? The important thing here is that we have chosen the coordinate sys-
tem so the centers of all the circles ain the family lie on the x axis. Now, for
any circle o with its center at point (g, 0), equation (2) above becomes

X+ 92— 2gx+¢c=0, (11)
or equivalently, as before,
(x=@*+y'=gi—c=1 (12)

For such a system, cis taken as fixed, while varying g generates an infinite
number of different o-circles (see footnote 4). Notice that, if ¢= 0, the ra-

2For fuller discussions, see Pedoe, Geometry, or Durell, Course of Plane Geometry (“For Fur-
ther Reading, Chapter 10,” p. 339).
3 Advanced students will recognize this as a so-called coaxal or coaxial system of circles.
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Figure 10.12. The coordinate axes are chosen so the centers of the family of
circles o lie on the x-axis. The dashed circle C passes through points L and L.

dius of any circle is just gand the circle touches the y axis. For ¢> 0 a circle
does not reach the y axis, and, for ¢ < 0, a circle crosses the y axis. However,
as drawn, ¢> 0, which also means that none of the circles intersect. Since
¢> 0, we can write ¢= p% and the radius of a given circle is r = /g2 — p2.
For rto be real, we see that g* > p?, which means that no circle in the system
can have a center between (—p, 0) and (+p, 0) and that the circles centered
there have zero radius. For that reason (—p, 0) and (+p, 0) are usually
termed limiting points and are denoted as L and L on figure 10.12.

Considering the point x = A where the indicated circle intersects the
x axis, we have from above A%? — 2Ag+ p* =0, or p* = 2Ag— A% With A= OA
and g= (OA + OA’)/2, the figure shows that

p?=0A- OA' = OL2 = (OL)>. (13)

This should begin to look familiar.® Redesignate the center g of circle r
as O (to get all capital letters), as in figure 10.13. It is then easy to show

*From equation (11), it is a simple exercise to show that the points of intersection of two
circles with g, g, and ¢, ¢, lie on the straight line 2(g, — g,) x+ ¢, — ¢, = 0. This line is termed
the “radical axis” and it is always perpendicular to the line connecting the centers of the
two circles. However, since we have required ¢, = ¢, above, we see that this equation becomes
x= 10, or the yaxis. Since none of the circles cross this axis, they do not intersect.

By way of terminology, A, A" and L, L are referred to as harmonic conjugates and are said
to divide the segment LA harmonically.
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from equation (13) that, for r= (OA” — OA)/2, the radius of the indicated
circle,

7= (0O'L)(0L),
and hence by definition the limiting points are inverses with respect to O’!

Next, a basic theorem in geometry (which we used to prove theorem E)
says that a tangent drawn from an external point (O’) to a circle (C) is the
geometric mean between the external segment (O’L) and the entire secant
(O’L’); consequently, the radius r must be tangent to circle C. In that case
we have the very important result: Because L and I are inverses, circles C and r
intersect orthogonally.® Notice we could draw an infinite number of circles C
with different diameters through L and L’ but we have not specified any
diameter. Thus, any circle C and any circle o intersect orthogonally.

Now to theorem N. Let us invert the entire figure 10.12 with respect
to one of the limiting points, say L. By theorem B, because none of the a-
circles on the left pass through the center of inversion, they will all invert
into other circles o whose centers lie somewhere on the x axis, as shown in
figure 10.14. On the other hand, since every C-circle passes through the
center of inversion, L, they must invert into a straight line, C’. Further, be-
cause any C-circle is orthogonal to all the a-circles, any C’ must be orthogo-
nal to the inverse circles ¢/. (If this is not obvious, quote theorem L above.)
Consequently, C’ must be a diameter of ¢. In fact, all the C’ must intersect

5“Orthogonal” here has its usual meaning: at right angles.

Figure 10.13. Redesignate the
center gof the a-circle ras O". One
sees that Land L’ are inverses with
respect to O”. Thus, circle C must
intersect circle r orthogonally.

327
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Figure 10.14. Invert figure 10.13 (left) with respect to the limiting point L. The
o-circles invert into a concentric family of circles o/ (right) with center L" and
the C-circles invert into straight lines orthogonal to the «.

at the inverse of I’ (call it L”), and so L” is the center of a family of concen-
tric circles o/. Thus we have

Theorem N
By the proper choice of the center of inversion 7, two circles that

are not in contact can be inverted into two concentric circles. (The
proper choice of T'is one of the limiting points.)

To prove theorem P, consider figure 10.15. Drop a perpendicular TM onto
0’,0',, as shown, where the O designate the centers of the inverse circles.
Then by the Pythagorean theorem

(O[T)? +(05T)* = (O[M)* +(IM)* + (O3N)* + (NT)?
= (O{N)? +(NT)? + (O;M)? + (TM)?
= (05T)* +(05T)*.
But the length of the tangent L from any external point 7 to a circle of

radius 7 is also given by Pythagoras as L2 = (O'T)? — v, where O’ is the cir-
cle’s center. Thus in our case

L3+ 13 = (O]T)% +(05T)% — 202,
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T
02 (o)
M 1
Figure 10.15. The centers of the four inverse circles O/, 0,” 0,
N 04' are assumed to form the vertices of a rectangle.
O] (6]
3 4

or from above,
L2+ 13 = (O;T)? +(05T)% — 2r"2
=13+ 13

Theorem E then immediately gives the desired result:

Theorem P

If four circles ), r,, r,, 7, can be inverted into four circles of equal
radii ¥ whose centers lie on a rectangle, then

1 1 1 1

n n n n

Solution to Hotta’s Problem

With theorems A-E in hand, many problems like those in chapter 6 are
surprisingly easy to solve and require no more than high school geometry.
We demonstrate this by solving Hotta’s problem.

Begin by referring to figure 10.16. We are given that the radius of the
outer circle o is rand the radii of the two largest inscribed circles fand y
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Figure 10.16. Hotta’s problem. The
radius of the circle o is . The radius of
the inscribed circles fand y is r, = 1/2r.
The nth circle in the outer chain will
have radius r,, and the nth circle in the
inner chain will have radius ¢ . The
largest circle in the inner chain ¢, is
indicated.

are each 1/2. The problem asks us to find the radius of the nth circle in the
outer or inner contact chains in terms of ». Denote by r, the radius of circles
B and y. As just stated, r, = /2. Let r, = radius of the third largest circle
and ¢, = radius of the largest circle in the inner chain. We will use » and ¢,
to designate the radii of the nth circle in the outer and inner chains. As we
have throughout the book, we will also use r and ¢, to designate the circles
themselves.
Before employing inversion we will need the radii Ty and ¢,. From Figure
10.17, we see that r— 2r, = h. Also, the Pythagorean theorem gives
(n+1r)? =02+ +h)>
From these two relationships, and remembering that r=2r, we quickly
find that
1
Ty =—1. (14)
)

Similarly, using the Pythagorean theorem on the small circle ¢, (figure
10.18) leads to

Hh=—. (15)
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Figure 10.17. The relationships needed to show
that r, = 7/3 (equation (14). Note that
h=r—2r,=2r - 2r,, where the last equality
follows because r= 2r,.

"V‘;

Figure 10.18. The relationships needed to
show that ¢, = r/15 [equation (15)].

We now begin to invert the figure with respect to the point 7; chosen as
shown in figure 10.19. For simplicity we can take the radius of the inversion
circle X to be k=1 (which only means that everything is scaled to 1). Then,
by the definition of inversion, we must have for point O

TO-TO =1.
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" |
T
o'

Figure 10.19. Because they pass through the

center of inversion 7, the circles & and 8 must P
invert into straight lines, as shown. The B' o
distances of o and 8’ from T are given by 1/2r Ur
equations 16 and 17.
T
But TO = r. Thus
, 1
TO = —. (16)
r
Similarly for point B,
TB-TB' =1, TB= 2y,
or
, 1
T8 = —. (17)
2r

Now, note that circle o passes through the center of inversion, 1. Thus, by
theorem C, ov must invert into a straight line, in particular into a horizontal
line because we have chosen T to lie directly below O (x coordinate of
O=g=0). Similarly, circle 8 also passes through 7, so B must invert into
a horizontal line. Equations (16) and (17) give the distances from 7 to
these lines. Figure 10.19 shows these relationships.

Next, consider the upper circle, with r=1r. This circle does not pass
through 7; so by theorem B it must invert into another circle. But circle 7, is
tangent to circle 8 at point O and tangent to circle o at point B. Therefore
it must invert into the circle 7| that lies between 8" and ¢, as shown in fig-
ure 10.20. Similarly, circle r, is tangent to ¢,  and 7, as shown. Therefore it
must invert into the circle ¥, shown in figure 10.20. The same is true for all
the circles in the outer chain.

Thus we have the remarkable result that all the inverse circles in the
outer chain have the same radius!
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Figure 10.20. Because r, is tangent
to both o and f at the points O and
B, it must invert into a circle that
lies between ¢ and 8 and tangent
to them at O’ and B’. In the same
way, the circle 7, is tangent to r,, @,
and B. Thus, the outer chain of

B'  circles maps to a contact chain of

r ) o inverse circles that all must lie
between o and f. In other words,
all the inverse circles have the same

o' radius!

In the same way, all the circles of the inner chain map into circles of equal
radius:

We now relate " and ¢’ to . Consider r,. The distance from T to the cen-
ter of circle y (r)) is by definition d in theorem D. In this case, from figure
10.16, d = 3r,. Theorem D states that r/*(d? —r})? = r}, which yields

=y = L
! 8n '
But r, =1/2, so
, 1
r'=—
4r
Similarly,
1
=— 19
16r (19)

Now that we have 7" and ¢’ in terms of 1, we can get back to the r’s and
t’s. We draw the tangent I, from 7 to 7, as in figure 10.21. Notice first
from the figure that the distance to the center of #’ is given by

x =2(n—1)7. (20)
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1/72r
Figure 10.21. The distance L,
from T'to 7 is given by the
Pythagorean theorem.
Also, by the Pythagorean theorem,
I2 +9'2 = M2,
1)
M2 =(r’+—T) +x2. (21)
We now employ theorem E, which tells us that
,rl
L =— (22)
7,

Substituting equations (18), (20), and (22) into equation (21) and solving
for r yields

,
Y, = ———.
T 24 (n—-1)2

This gives the radius of the nth circle in the outer chain in terms of 7, as
required.

(23)

For the inner chain, we follow the same procedure (figure 10.22). In this
case we have

12 = M2 -1,
1 2

M2 = (——t’) +x2. (24)
r

From equation (19) we have ¢’ = (1/16)r and from figure 10.11, x = (2n— 1)7".
This time theorem E gives [2 =t’/t,. Substituting these expressions into
equation (24) yields
_ r
= (n-1)2 +14°
the desired result. As an example, for n=>5, { =1/95. QED.

(25)
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1r
Figure 10.22. The distance
L from T'to ¢ is given by the
Pythagorean theorem.

Further Practice with Jnversion

For further practice with the inversion technique, we here give three more
(nontrivial) exercises from sangaku, without solution.

Exercise 1
This problem is from a lost tablet hung by Adachi Mitsuaki in 1821 in the Asakusa

Kanzeondo temple, Tokyo prefecture. We know of it from the 1830 manuscript Saishi
Shinzan or Collection of Sangaku by Nakamura Tokikazu (?-1880).

Inside the semicircle of radius rshown in figure 10.23 are contained nine circles with
the tangent properties indicated. Show that

n=

Figure 10.23. Show that r, =+/2; r, = 1/4; r, = v/15;
r,=1/12; r, = 1/10.
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Exercise 2
Like the previous exercise, this one also comes from Nakamura Tokikazu’s Collection of

Sangaku.

In figure 10.24, show that

Figure 10.24. Find the relationship among 7, Ty, and } B J\

75, which are inscribed in a semicircle of radius r.

Exercise 3
This problem dates from 1819 and comes from Yamaguchi’s diary.

In figure 10.25 four chains of circles of radii », (k=0, 1, 2, 3, ... ,n) kiss the large

circle of radius rinternally as well as kiss two circles of radii r/2 externally. Find r, in
terms of r.

Figure 10.25. Find 1, k=0,1,2,3,..., nin terms of




TFor Further Reading

What Do J Need to Know to Read This Book?2

Three popular high school geometry texts are listed below. Each has its supporters
and detractors. Of the first two, the first is definitely more attractive, but apparently
lacks some necessary results contained in the second. We are not very familiar with the
third. None will provide enough technique to conquer all the problems in this book,
and they will need to be supplemented by other sources on trigonometry and calculus.

Harold R. Jacobs, Geometry: Seeing, Doing, Understanding, third edition (W. H.
Freeman, New York, 2003).

Ray C. Jugensen, Richard G. Brown, John W. Jurgensen, Geometry (Mcdougal Littell/
Houghton Mifflin, New York, 2000).

Larson, Boswell, Stiff, Geometry, tenth edition (Mcdougal Littell/Houghton Mifflin,
New York, 2001).

Below are several advanced texts, more closely matched to the harder problems in
this book. Ogilvy is very readable, but presents only selected topics. Coxeter and Gri-
etzer is a no-nonsense college-level text. Pedoe’s approach to geometry is more alge-
braic than the others. Durell’s book is a century old but somewhat clearer than Pedoe’s
and presents many theorems not discussed elsewhere.

Stanley Ogilvy, Excursions in Geometry (Dover, New York, 1990).

H. Coxeter and S. Greitzer, Geometry Revisited (New Mathematical Library, New York 1967).

Dan Pedoe, Geometry, A Comprehensive Course (Dover, New York, 1988).

Clement Durell, A Course of Plane Geometry for Advanced Students (Macmillan, London,
1909), part 1.

Chapter One. Japan and Temple Geometry

In English
Two large-scale surveys of Japanese history that have been very helpful for chapter 1 are

Marius B. Jansen, The Making of Modern Japan (Harvard University Press, Cam-
bridge, 2000).
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Conrad Totman, Early Modern Japan (University of California Press, Berkeley,
1993).

Only two histories devoted to Japanese mathematics are readily available in the
United States, and they are now nearly 100 years old:

Yoshio Mikami, The Development of Mathematics in China and Japan (Chelsea, New
York, 1974; reprint of 1913 edition).

David Smith and Yoshio Mikami A History of Japanese Mathematics (Open Court, Chi-
cago, 1914).

Despite any shortcomings and mistakes they are the major references in English on
the history of Japanese mathematics.

On the Web

A fairly comprehensive and reliable website on the history of mathematics is the
MacTutor History of Mathematics Archive, which has been established at

http://www-history.mcs.st-andrews.ac.uk/history/index.html

The archive does not contain a special section on Japanese mathematics, but it does
contain biographies of several of the mathematicians mentioned throughout this
book.

In Japanese

A website on Traditional Japanese Mathematics by Fukagawa and Horibe:
http://horibe.jp/Japanese_Math.htm

The Japanese translation of the Scientific American article can be obtained via
http://www.nikkei-science.com/

Chapter 2. The Chinese Foundation of Japanese Mathematics

In English

Yoshio Mikami, The Development of Mathematics In China and Japan (Chelsea New
York, 1974; reprint of 1913 edition).

David Smith and Yoshio Mikami, A History of Japanese Mathematics (Open Court, Chi-
cago, 1914).

Colin A. Ronan, The Shorter Science and Civilization in Ancient China: An Abridge-
ment of Joseph Needham’s Original Text (Cambridge University Press, Cambridge,
1995), Vol. 2.

Jean-Claude Martzloff, A History of Chinese Mathematics (Springer, Berlin, 1995).

Christopher Cullen, Astronomy and Mathematics in Ancient China: The Zhou Bi Suan
Jing (Cambridge University Press, Cambridge, 1996).

Roger Cooke, The History of Mathematics: A Brief Course (Wily-Interscience, New York,
2005).
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On the Web
The MacTutor History of Mathematics Archive at
http://www-history.mcs.st-andrews.ac.uk/history/index.html

A good starting point for this chapter is
http://turnbull.mcs.st-and.ac.uk/history/Indexes/Chinese.html

In Japanese
Li Di, History of Chinese Mathematics, Japanese translation by Otake Shigeo and Lu
Renrui (Morikita Syuppan, Tokyo, 2002).

Chapter 6. Still Harder Temple Geometry Problems

Additional temple geometry problems, most fairly difficult, can be found in
Fukagawa Hidetoshi and Dan Pedoe, Japanese Temple Geometry Problems, available
from Charles Babbage Research Centre, P.O. Box 272, St. Norbert Postal Station,
Winnepeg Canada, R3V 1L6.
Fukagawa Hidetoshi and John Rigby, Traditional Japanese Mathematics Problems of the
18th and 19th Centuries (SCT, Singapore, 2002).

Chapter 10. Introduction to Inversion

The advanced texts listed in the section “What Do I Need to Know to Read This
Book?” all discuss inversion in less or more detail. They are:
Stanley Ogilvy, Excursions in Geometry (Dover, New York, 1990).

At a higher level but more complete are

H. Coxeter and S. Greitzer, Geometry Revisited (New Mathematical Library, New York,
1967).
Dan Pedoe Geometry, A Comprehensive Course (Dover, New York, 1988).
Probably the clearest, and containing literally hundreds of results on inversion is
Clement Durell, A Course of Plane Geometry for Advanced Students (Macmillan, Lon-
don, 1909), Part 1.

Many websites devoted to inversion can be found on the Internet. The degree of
comprehensibility varies widely. A few sites that may be helpful with definitions and
constructions are:

http:/whistleralley.com/inversion/inversion.htm

http://aleph0.clarku.edu/~djoyce/java/compass/compass3.html
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inversion and, 236-38, 313-36 (see
also inversion); Malfatti problem
and, 293-95; pilgrimages and, 244;
sagitta and, 304; Steiner chain and,
291-93; volume and, 22. See also
theorems

Geometry (Pedoe), 325n2

Gikyosha shrine, 117

Gion shrine problem, 78, 250

gnomon, 27-28

Gochinyorai temple, 252

Godel, Kurt, x

Goldberg, Michael, 294

Great Eastern Temple, 10

Great Peace. See Edo period

Greeks, 2, 22, 283

Gumma prefecture, 94, 111, 118, 199

gun bugyo (country magistrate), 78

Gunji Senuemon, 101

Guo Sanpo (Concise Mathematics)
(Miyake), 164

Gyito Tennosha shrine, 204

Hachiman village, 247
Hachiya Sadaaki, 301
Hachiya Teisho, 301nl
haiku, 7, 244

Haji Doun, 31

Hakata, 261

Hakone spa, 266
Hakuunsan Myougin shrine, 246
Hamamatsu city, 261, 266
Harada Danbe, 261
Harada Futoshi, 261
Hara Toyokatsu, 93
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harmonic conjugates, 326n5

Hartsingius, Petrius, 5

Haruna shrine, 94

Haruta village, 251

Hasegawa Hiroshi, 83, 244

Hasimoto Masakuta, 289

Hatsubi Sanpo (Detailed Mathematics)
(Seki), 69

Hayashi Nobuyoshi, 257

heaven origin unit, 30

Heian era, 13

Heian-kyo (city of peace and
tranquility), 12-13

Heijo, 10

Heinouchi Masaomi, 166, 284

Heron numbers, 284

Heron’s formula, 284, 295

hexlet theorem, 22, 83, 205-6,
288-89

Hikone clan, 255, 307

Himae shrine, 256

Himeji, 258

Hiroe Nagasada, 231-33, 253

Hiroha, 261, 262

Hirokawa village, 263

Hiroshima prefecture, 93

Hitomi Masahide, 264

Hodoji Zen, 244

Hoen Sankei (Mathematics of Circles
and Squares) (Matsunaga), 75, 305

Hoen Zassan (Essay on Mathematics of
Circles and Squares) (Matsunaga), 75

Hokkaido, 117

Hokoji temple, 265

Holdred, Theophilius, 40

Honjiyo, 201

Honma Masayoshi, 158

Horiike Hisamichi, 169, 259

Hori Yoji, 9, 111

Horner, William, 40

Horner’s method, 70

Horyuji, 12

Hosaka Nobuyoshi, 146

Hosshinsyu (Stories about Buddhism)
(Kamo), 13

Hotta Jinsuke, 201; Descartes circle
theorem (DCT) and, 229-31;
inversion and, 313, 329-35;
Yoshida and, 228, 236

Hotta Sensuke, 117

Ichinoseki, 104
Ichino Shigetaka, 206
Ii Naosuke, 307

Ikeda Sadakazu, 149

Ikeda Taiichi, 292-93

Imahori Yakichi, 108

Imaizumi Seishichi, 157

Imamura Chisho, 64n5

Imamura Tomoaki, 59, 61, 64—65

Ima town, 249

incenter, Xxv

infinite series, 75, 30411

Inki Sanka (Poetry of Multiples and
Divisions) (Imamura), 37, 59, 64-65

Ino Shujiro, 254, 275-76

Ino Tadataka, 246n2, 254

inscribing, xxv

Institute for Advanced Study, xv

integration: definite, 306—-11; develop-
ment of, 303-6; as folding tables,
73; pi and, 303-5; series expansion
and, 304-11. See also calculus

international trade, 3-5, 24, 261

inversion, 191, 236-38; angle
preservation and, 318; basic
theorems of, 315-18; center of,
315-21, 332; coaxial system and,
325n2; as conformal transforma-
tion, 314n1; further practice with,
335-36; harmonic conjugates and,
326n5; hexlet theorem and,
288-89; Hotta’s problem and, 313,
329-35; Iwata’s theorem and, 318;
kissing circles and, 285-88; limiting
points and, 326-28; proofs for,
318-29; Pythagorean theorem and,
321, 330-31, 334; Steiner chain and,
291-93; Western culture and, 313;
Yamaguchi travel diary and, 336

Irie Shinjyun, 145

Isa Jingt, 12

Isaniha shrine, 90, 260

Ise, 259

Ishiguro Nobuyoshi, 148

Ishikawa Nagamasa, 202, 204

Ishiyamadera temple, 264

isolationism, xv, b, 7, 19, 59, 243

Isomura Yoshinori, 16, 65—68

isotopes, 287

1to Sotaro school, 109

1to Tsunehiro, 109

1to Yasusada school, 116

Iwai Shigeto, 161, 199

Iwaki clan, 75

Iwaseo shrine, 201

Iwate prefecture, 83, 198

Izanagi shrine, 193
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Izumo Oyashiro, 262
Izumo Taisya, 12

Jansson, Jan, xxviii

Japanese: age of arithmetic and,
10-14; ascendance of traditional
mathematics in, 14-21; Chinese
influence on, 10, 27-57 (see also
Chinese); closed country policy of,
xv, b, 7,19, 59, 243; decline of
traditional mathematics in, 21-25;
Edo period and, 3, 7,19-21, 59-88;
foreign trade and, 3-5, 24, 261;
Genroku (Renaissance) and, 7, 69,
90; high-school teacher rank in, x;
independent writing system of, 13;
Kamakura period and, 13; mapping
of, 254; Muromachi period and, 13;
Nara period of, 10, 12-14, 256;
power struggles in, 12-14; samurai
and, ix; surname order and, xviii;
temples and, 1-10; Tokugawa
shogunate and, 2-4, 7, 14, 19, 24,
59, 68, 76, 79, 90, 254; travel in,
243—44; unification of, 10; units of,
61nl, 62nn2,3; warlords and, 2-5

Japanese mathematics. See wasan
(Japanese mathematics)

Japanese temple geometry. See
sangaku

Japanese Temple Geometry Problems
(Fukagawa and Pedoe), xv, 296n8

Jesuits, 4

Jinbyo Bukkaku Sangakushu (Collection
of Sangaku from the Aida School)
(Aida), 95

Jinko-ki (Large and Small Numbers)
(Yoshida), 16, 19; abacus and, 61;
Chinese and, 31-32, 36, 39, 43; pi
and, 65, 304; problems of, 61-64

Jiu zhang Suanshu (Nine Chapters on
the Mathematical Art), 10, 19, 61;
bamboo sticks of, 29; influence of,
28-31; problems of, 31-35;
Pythagorean theorem and, 28-29,
34-35; quadratics and, 29

juku (private schools), 19-21, 24,
59-60

Juntendo Sanpu (The Fukuda School of
Mathematics) (Fukuda), 119

Jyugairoku (Imamura), 64

Kabuki theater, 7
Kagawa prefecture, 201, 260
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Kaji, 247

Kakki Sanpo (Concise Mathematics)
(Shino), 193, 244

Kakuda city, 118

Kaku Ho (Angles of Regular Polygons)
(Seki), 78

Kakuyu, 243

Kamakura period, 13

Kambei Mori, 14n4

kami (Shinto gods), 8

Kamiya Norizane, 264

Kamo no Chomei, 13

Kanabe, 254

Kanagawa prefecture, 204-5

Kanami Kiyotsugu, 13

Kanbe, 255

Kanbun, xvii, 9

Kanjya Otogi Zoshi (Collection of
Interesting Results in Mathematics)
(Nakane), 76

Kanzeon temple, 95

Al-Karaji, 42

Kashii shrine, 261

Kashiwano Tsunetada, 263-64, 281

Katayamahiko shrine, 145; divided
areas and, 103-7, 113-14, inscribed
circles and, 94-95, 100, 110, 147,
152, 156; tangents and 95

Katori Zentaro, 256, 278-80

Kato Yoshiaki, 198

Katsurahama shrine, 93

Katsuyo Sanpo (Collection of Important
Mathematical Results) (Araki),
16, 69, 73

Kawahara Taishi temple, 204

Kawai Sawame, 196

Kawakita Tomochika, 284

Kawano Michimuku, 150, 168

Kawasaki city, 204

Keibi Sanpo (Hanging Mathematics)
(Horiiki), 169

Kenki Sanpo (Study Mathematics
Profoundly) (Takebe), 74-75

Kibitsu shrine, 259

Ki-Miidera town, 257

Kimura Sadamasa, 204, 235

kirishitans (Christians), 4

kissing circles, 285-91

“Kiss Precise, The” (Soddy), 283,
287-88

Kitagawa Moko, 31, 139, 194, 212

Kitahara Isao, 121

Kitamuki Kannon temple, 89, 161

Kitamura, 247

Kitani Tadahide, 136, 261

Kitano shrine, 111

Kitanotenman shrine, 264

Kitaro, 263

Kiyomizu temple, 265

Kobata Atsukuni, 95

Kobayashi, 247, 249

Kobayashi Nobutomo, 101, 154

Kobayashi Syouta, 96

Kobayashi Tadayoshi, 159

Kofukuji temple, 256

Koide Kanemasa, 306

Koishikawa, 206

Kojima Yokichi, 118

Kokon Sankam (Mathematics, Past and
Present) (Uchida), 83, 107, 204

Kokon Sanpoki (Old and New Mathemat-
ics) (Sawaguchi), 69

Komoro city, 159

Konpira shrine, 159

Koreans, 5, 7, 21, 261n6

Kotohira shrine, 260

Koufu clan, 68

Kowa Seki, xviii, 16n7

Koyama Kaname, 256

Kozagun, 205

KuiBen diuXiang SiYan ZaZi (Leading
Book of Four Words in Verse), 30

Kumano shrine, 109, 116,
247, 284

Kuno Hirotomo, 160

Kurasako Kannon temple, 92

Kurihara, 263

Kurobe river, 252

Kurume clan, 80, 261

Kusaka Makoto, 79, 194

Kyokusu Binran (Survey of Maxima and
Minima Problems) (Takeda), 257

Kyto, 12-15, 108, 255, 264-65

Kyoto Gion Daito jutsu
(The Solution to the Gion Shrine
Problem) (Ajima), 78

“Kyuka Sankei” (Nine Flowers
Mathematics) (Kitagawa), 194

Kyushua, 4

Lagrange, Joseph, 79

Lake Biwako, 255, 263

lateral thinking, 146

law of cosines, xxii, 131, 225, 268, 284
law of sines, 284

Leibnitz, Wilhelm Gottfried, 22, 73
Li Di, 30n2

limiting points, 326-28

Index

literature, 4, 7, 13

Liu Hsin, 40

Liu Hui, 32, 40

Lob, H., 293-94
logarithms, 24, 79n8, 163
Los, G. A., 294

magic squares, 30, 42, 76, 78

magic wheels, 76

Mahazawa Yasumitsu, 152

Makota, 310

Malfatti, Gian Francesco, 79, 293

Malfatti problem, 22, 79, 196, 293-95

Maruyama Ryoukan, 192

Master of Mathematics licenses,
20-21

Masuda Koujirou, 253, 275

Mathematica school, 83

mathematics: age of arithmetic and,
10-14; ascendance of traditional
Japanese, 14-21; calculating sticks
and, 11-12; Chinese, xvi, 4-5,
10-11, 24, 27-57, 61, 91; classical,
283; decline of traditional
Japanese, 21-25; Edo period and,
59-88; Greek, 2, 10, 1616, 22, 283;
immutability of, 2; importance of,
263-64; jyuku schools and, 19-21,
24; pilgrimages and, 244; samurai
and, ix; stylistic form and, 7-8;
Yamaguchi travel diary and,
243-66. See also wasan (Japanese
mathematics)

Mathematics of Shrines and Temples
(Fujita), 24

Mathesis journal, 298

Matsumiya, 277-78

Matsumoto Einosuke, 263

Matsunaga Yoshisuke, 24,
75, 305

Matsuoka Makoto, 200, 207

Matumiya Kiheiji, 255

Matushiro, 247

maxima-minima problems; differen-
tiation and, 301-3; Enriand,
301-11

Meiji Fundamental Code, 24-25

Meiji Shogaku Jinko-ki (Jinko-ki of the
Meiji Era) (Fukuda), 170

Meiseirinji sangaku, 97, 106, 196, 199

Mie prefecture, 193

Miidera temple, 263—-64

Minagawa Eisai, 251

Minami Koushin, 168
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Minamishinho village, 255

Minamoto shoguns, 13

missionaries, 4

Miyagi prefecture, 118

Miyake Chikataka, 164

Miyazaki prefecture, 150

Miyazawa Bunzaemon, 157

Mizuho sangaku, 111, 155

Mizuno Tsuneyuki, 100

modular arithmetic, 38-39

Momota, 253

monks, ix

Morikawa Jihei, 265

Mori Shigeyoshi, 14-15, 31, 60-61,
64-65

movable type, 7

Mt. Asama, 247

Muramatsu Shigekiyo, 16, 65-66, 71

Murasaki, Shikibu, 13

Muromachi period, 13

music, 7, 30

Nagano prefecture, 96, 120, 159,
161, 247

Nagaoka city, 120, 252

Nagasaki, 4-5, 264

Nagata Takamichi, 102

Nagata Toshimasa, 100

Nagayoshi Nobuhiro, 116

Nagoaka Tenman shrine, 108

Nagoya, 100, 102, 198, 266

Nagoya Science Museum, xvii

Naito Masaki, 75

Nakamura Fumitora, 264

Nakamura Syuhei, 264

Nakamura Tokikazu, 118, 156, 168,
289, 296, 335-36

Nakane Genjun, 76-78

Nakane Genkei, 76

Nakashima Chozaburo, 5

Nakasone Munekuni, 94

Nakata Kokan, 148

Nara period, 10, 12-14, 256

Narazaki Hozuke, 261

Nature magazine, 288

negative numbers, 30

Neuberg, Jean Baptiste, 298-99

Neuberg’s theorem, 298-99

Newton, Isaac, 68, 73

Nezumi San (Mice Problem), 63

Niigata province, 244, 249

Niikappugun, 117

nine-point circle, 295-96

Nishihirokami Hachiman shrine, 148

Nishikannta shrine, 204

Nobuyoshi, 192

Noh drama, 7, 13

notation, xxv, 24

Notoyama Nobutomo, 155

Number Theory and Its History (Ore),
38n8, 163n3

Nunomura Jingoro, 256

Obama, 263

Oda Nobunaga, 14

Ogilvy, Stanley, 238n9

Ogura Yoshisada, 254, 263

Ohishi Manabu, 20n9

Ohita prefecture, 204

Ohma Shinmeisya shrine, 118

Ohsu Kannon temple, 100, 198

Ohta Sadaharu, 252

Okada Jiumon, 264

Okayama, 259

Okayu Yasumoto, 166, 208-9

Okazaki school, 81

Okuda Tsume, 106

Okuma, 247

105—subraction problem, 39

Omura Kazuhide, 216, 236, 238, 288

Ono Eiju, 199, 246n2, 247

On Tangencies (Apollonius), 284

“On the solutions to Malfatti’s
problem for a triangle” (Lob and
Richmond), 293n5

Opera Omnia Series Prima (Euler), 207

Ore, Oyestein, 38n8, 163n3

Osaka, 10, 14, 119, 254-55, 257

Owari clan, 82

Opyashirazu coast, 252

packing problems, 287-88

paper cutting, 76

Pascal, Blaise, 43

Pascal’s triangle, 42-46

Pedoe, Daniel, x—xi, xv—xvi, 296n8,
325n2

Perry, Matthew C., 3, 24

pi, 16, 19, 98, 188; Chinese and, 32,
40; Imamura and, 64; infinite
series and, 75; integration and,
303-5; [somura and, 66; Matsu-
naga and, 75; Muramatsu and, 65,
71; Seki and, 71-73, 75; Suanfa
Tong Zong and, 42; Takebe and,
74-75

pilgrimages, 243—-44

Pillow Book, The (Sei), 13
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poetry, 7,59, 64, 244

Pollock, Jackson, x

Portuguese, 4-5

positive numbers, 30

power series, 304n2

primes, 80-81

printing, 7, 21

Ptolemy’s theorem, 283, 298

puppets, 7

Pythagoreans, 2

Pythagorean theorem, xxii, 83, 146,
283; cylinders and, 184; Descartes
circle theorem and, 291; ellipses
and, 240; fourth-order equations
and, 223; inscribed circles and,
122-24, 129-30, 176, 179-80, 194,
214-15, inversion and, 321, 330-31,
334; Jiuzhang Suanshu and, 10,
28-29, 34-35; primitive triples and,
80-81, 284; quadratics and, 142-43,
241; similar triangles and, 172-73;
Suanfa Tong Zong and, 50-52;
Yamaguchi travel diary and,
277-79; Zenkoji temple sangaku
and, 269-71

Qin Jiushao (Chin Chiu-Shao), 30

quadratics, xxii, 139; Descartes circle
theorem (DCT) and, 228-31;
ellipses and, 178-79; inscribed
circles and, 170; Jiuzhang Suanshu
and, 29; Pythagorean theorem
and, 142-43, 241; reduction to
quadratures and, 241; similar
triangles and, 173

Record of the Ushikawa Inari Shrine
Sangaku, 157

recreational mathematics, 76

reduction to quadratures, 241

reiyakukyutsu (dividing by zero), 85

religion: Buddhists, ix, xv, xviii, 2, 4,
9, 12-13, 265; chants, 13; Chris-
tians, 4-5; Jesuits, 4; missionaries
and, 4; peace and, 12; pilgrimages
and, 243-44; tolerance and, 12;
Zen principles, 13

remainder theorem, 38

Renaissance, 7, 13, 69, 90

Richmond, H. W., 293-94

Rigby, J. F., 143, 189

Roku shrine, 246

Rothman, Tony, xii, xv—xviii

Ruffini, Paolo, 40
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Rutherford, Ernest, 236, 285
Ryojin Hisho (Poems of Those Days), 16

Sabae, 252

Sacred Mathematics (Fujita), 24

sagitta, 304

Saijyoh ryu (The Best Mathematics
School), 82

Saishi Shinzan (The Mathematics of
Shrines) (Nakamura), 118, 156, 168,
335-36

Saisi Sinzan (Mathematical Tablets)
(Nakamura), 289, 296

Saitama prefecture, 161

Saito Gigi, 94

Saito Kuninori, 89, 161

Saito Mitsukuni, 250

Sakabe Kohan, 37, 41, 309

Sakashiro village, 247

sakoku (closed country), xv, 5, 7, 19,
59, 243

Sakuma Yoken, 20, 244

Sakurai shrine, 90

Samukawa shrine, 205

samurai, ix; Aida and, 81; Ajima and,
78; Chiba and, 83; culture for,
19-20; Edo period and, 19-21;
education and, 9-10, 19-21,
59-60; Kamiya and, 264; Seki and,
68; Takebe and, 73; Wada and, 306

Sand Reckoner (Archimedes), 10

sangaku, xv; art of, ix—xii, xv, 7;
calculus and, 146, 160-62, 182—88;
Chinese mathematics and, xvi (see
also Chinese); complexity of, 89-90;
contributors to, 1-2, 89-90;
diophantine problems and, 91-93,
146; easier geometry problems of,
88-121; economics of, 21; Edo
period and, 89-90; ellipses and,
191-92, 196-99, 218-25; errors in,
130, 132; expertise needed for,
xxi-xxiii; folding fan problems and,
106-7, 199, 256; as folk mathemat-
ics, 1; harder geometry problems
and, 145-62, 191-241; inversion
and, 236-38 (see also inversion); lack
of solutions on, 9; oldest surviving,
9; pilgrimages and, 244; as Shinto
gifts, 8; stylistic form and, 7-8;
wooden tablets and, ix; Yamaguchi
travel diary and, xvi-xvii, 243-66

Sangaku e no Shotai (Invitation to
Sangaku) (Nakamura), 161

Sangaku Keimo Genkai Taisei (Annota-
tion of the Suanxue Qimeng)
(Takebe), 31

Sangaku Kochi (Study of Mathematics)
(Ishiguro), 148

Sangaku of Ohsu Kannon (Nagatz), 100

sangi (calculating sticks), 11-13, 19

San Hakase (Department of Arithme-
tic Intelligence), 11-12

Sannosha shrine, 192

Sanpo Chokujutsu Setkai (Mathematics
without Proof) (Heinouchi), 166, 284

Sanpo Jojutsu, 284

Sanpo Kantuh Jyutsu (General Methods
in Geometry) (Aida), 82

Sanpo Ketsu Gisyou (Profound
Mathematics) (Isomura), 66

Sanpo Kisho (Enjoy Mathematics Tablets)
(Baba), 202

Sanpo Koren (Mathematical Gems)
(Kobayashi), 159

Sanpo Kyuseki Tsu-ko (Theory of
Integrations) (Uchida), 182-83, 189,
238, 307, 309

Sanpo Shinsyo (New Mathematics)
(Chiba), 83

Sanpo Tenshoho (Algebraic Geomelry)
(Aida), 82

Sanpo Tenshoho Shinan (Guidebook
to Algebra and Geometry) (Aida),
115, 179, 224

Sanpo Tenzan Shinanroku (Guide to
Algebraic Method of Geometry)
(Sakabe), 37, 41

Sanpo Tenzan Syogakusyo (Geometry and
Algebra) (Hasimoto), 289

Sanpo Tenzan Tebikigusa (Algebraic
Methods in Geometry) (Omura), 216,
236-38

Sanpo Tsusho (Mathematics)

(Furuya), 168

Sanpo Zasso (Concise Mathematics)
(Iwai), 161, 199

Sanso (Stack of Mathematics) (Mura-
matsu), 16

Sato Naosue, 104

saunzi (calculating sticks), 11-12

Sawaguchi Kazuyuki, 69

Sawai, 256

Sawa Keisaku, 199

Sawa Masayoshi, 258-59, 280

Scientific American, xvi, 201n2

Seihoji temple, 256

Sei Shonagon, 13

Index

Seiyo Sanpo (Detailed Mathematics)
(Fujita), 24, 80-81

Seki Gorozayemon, 68

Seki school, 81-82, 263

Seki Takakazu, xviii, 16, 22; abilities
of, 68-70; background of, 68; Enri
and, 69-70, 73; pi and, 71-73, 75

Seki Terutoshi, 249

Sendai city, 256

Sengaikyo (Chinese geography
book), 64

Senhoku city, 109, 116, 284

Sen no Rikyu, 13

series expansion, 304-11

Seto Nai Kai (the Inland Sea),
260-61

Shamei Sanpu (Sacred Mathematics)
(Shiraishi), 149, 162, 206, 292

Shang Kao, 28

Shichi Takatada, 196

Shiga province, 263, 307

Shima village, 261

Shimizu shrine, 96, 101

Shinjo clan, 78

Shino Chigyo, 193, 244

Shinohasawa shrine, 151

Shinomiya shrine, 264

Shinpeki Sanpo (Sacred Mathematics)
(Fuyjita), 80, 90, 201, 204

Shintani Benjiro, 256

Shinto shrines, ix, xv, xviii, 2, 8, 12,
243. See also specific shrines

Shiokawa Kokaido building, 120

Shiraishi Nagatada, 149, 162, 292

Shirakawa Katsunao, 111

Shiroyama Inari shrine, 199

shoguns, 2-4; Ashikaga, 13-14;
Genroku (Renaissance) and, 7;
Minamoto, 13; Tokugawa,
2-4,7, 14, 19, 24, 59, 68, 76,
79, 90, 254

Shatki Sanpo (Gems of Mathematics)
(Arima), 80

Shushu Jiuzhang (Mathematical Treatise
in Nine Chapters) (Qin), 30

Soddy, Frederick, 236, 283; Descartes
circle theorem and, 285, 287-89;
hexlet theorem and, 22, 83, 205-6,
288-89

“Sokuen Shukiho” (“Method for
Describing the Ellipse”) (Nobuyo-
shi), 192

Sokuen Syukai (Circumference of Ellipse)
(Sakabe), 309
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solid of Viviani, 188—89

Solutions to Kakki Sanpou (Furuya),
210

Solutions to Problems of Zoku Shinpeki
Sanpo (Kitagawa), 139

“Solutions to Problems of Zoku
Shinpeki Sanp6” (Okayu), 208

Solutions to Sanpo Kisho Problems
(Yoshida), 234

“Solutions to Shinpeki Sanpo Prob-
lems” (Yoshida), 228

“Solutions to Unsolved Problems of
the Sanpo Ketsu Gisho” (Seki), 69

soroban (Japanese abacus), 11, 14-16,
19, 42, 61, 136, 238, 303

Spanish, 4

square roots, 28, 64, 76-77

Steiner, Jakob, 291

Steiner chain, 291-93

Suri Shinpen (Mathematics of Shrines
and Temples) (Saito), 94

Suanfa Tong Zong (Systematic Treatise on
Mathematics) (Cheng), 15, 19, 35,
61; abacus and, 42; circles and,
43-44; geometric areas and, 44,
46-48; Pascal’s triangle and,
42-43, 45-46; pi and, 42; problems
of, 43-52; Pythagorean theorem
and, 50-52; sum of integers and,
47-48; versified formulas of, 30-31

suan phan (Chinese abacus), 14-15, 30

Suanxue Qimeng (Introduction to
Mathematical Studies) (Zhu),
30, 40-42

suanzi, 14, 30

Sugano Teizou, 159

Sugawara sangaku, 97-98, 105—6

Sugimoto Kozen, 162

Sugita Naotake, 193

Suibara village, 244, 252

Su-li Ching-Yin, 24

Suminokura Ry6i, 61

Suminokura Soan, 61

Sumiyoshi shrine, 119

Sunday, Billy, 313

Sun-Tsu (mathematician), 29, 33,
36-39

Sun-Tsu (samurai), 29

Sun-Tsu Suanjing (Arithmetic Classic of
Sun-Tsu) (Sun-Tsu), 29, 33, 36-39

Suruga province, 12

surveying, 83, 254

Susaka city, 120

Suwa shrine, 114, 247, 264

Suzuka shrine, 259

Suzuki Sataro, 151

Syosya temple, 258-59, 280

Syuki Sanpo (Mathematics)
(Arima), 283

Sywyuu Sanpo (Travel Mathematics)
(Yamaguchi), 243-66

Taga shrine, 255, 256

Takahara Yoshitane, 61

Takaku Kenjiro, 24-25

Takamatsu city, 201

Takarao shrine, 261-62, 280

Takasaki, 246

Takashima, 255, 263

Takebe Katahiro, 16, 19, 31,
73-75, 304-6

Takeda Atsunoshin, 243, 249, 257,
265, 281

Takeda Sadatada, 107

Takeuchi school, 159

Takeuchi Shikei, 160

Tales of the Genji, The (Murasaki), 13

Tanaba Shigetoshi, 97

Tanikawa Taizo, 92

Tani Yusai, 175

Tasei Sankei (Comprehensive Book of
Mathematics) (Takebe), 73

Tatebe Kenko, 73n6

Tatsuno city, 258

taxes, 12

Taylor series, 306, 311

tea ceremony, 7

Ten Classics, 10, 29

Tenman shrine, 257, 263-65, 281

Tenyru river, 266

Teramoto Yohachiro, 204

Tetsyjutu Sankei (Series) (Takebe), 73, 75

theorems, ix, 19-21; Casey’s, 22,
296-98; Ceva’s, 211; Chinese
remainder, 38; Descartes circle
theorem (DCT) and, 228-31,
284-91, 293, 297; Euclid’s algorithm
and, 80-81, 284; Feuerbach’s,
295-96; Heron’s formula and, 284,
295; hexlet, 22, 83, 205-6, 288-89;
inversion, 227-28, 315-34; Iwata’s,
318; Malfatti problem and, 293-95;
Neuberg’s, 298-99; Ptolemy’s, 283,
298; Pythagorean, 10, 28-29, 34-35
(see also Pythagorean theorem);
Pythagorean triples and, 80-81,
284; Steiner chain and, 291-93;
Viviani’s, 298
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theory of determinants, 22, 69-70

Theory of Integrations (Viviani), 298

three honorable disciples, 64

Toba, 95

Tochigi prefecture, 9

Todaiji, 10, 12

Tohsyo Sanpo Ketsu Gisho (Isomura), 66

Tokugawa shogunate, 90, 254;
castle towns and, 19n8; Fujita
and, 79; Iemitsu, 4; Ieyasu, 2—4,
14; isolationism and, 59; stability
of, 2-3, 7; Tsunashige, 68;
Yoshimune, 76

Tokyo, 107, 149, 162, 201, 204, 206,
292, 313, 335

Tokyo Academy, 83

Tomita Atsutada, 199

Tomitsuka Yuko, 146

Toraya Kyoemon, 266

Totman, Conrad, 7nl

Tottori, 263

Toyama prefecture, 148

Toyama shrine, 111

Toyama town, 246, 249, 252

Toyohashi city, 157

Toyotomi Hideyoshi, 3—-4, 14

Tozoji temple, 118

Traditional Japanese Mathematics
Problems (Fukagawa and Rigby),
189

travel, 243; castle towns and, 246,
249, 252, 255; guest houses and,
248; permits and, 247; Yamaguchi
travel diary and, 244-66

triangles, xxiii; Cevians and, 193n1;
equilateral, 96; Euler’s formula
and, 298; Feuerbach’s theorem
and, 295-96; Heron’s formula
and, 284; isosceles, 94; Jiuzhang
Suanshu and, 28-29; law of
cosines, xxii, 131, 268, 284; law of
sines, 284; Malfatti problem and,
293-95; Neuberg’s theorem and,
298-99; notation for, xxv;
Pascal’s, 42—-43, 45—46; similar,
xxii; spherical, 298; Suanfa Tong
Zong and, 42—-46; Zhou bi suan jing
and, 28

trigonometry, xvii—xviii, 75, 131,
133, 136, 298; Euler’s formula
and, 298; inscribed circles and,
177-78, 209, law of cosines, xxii,
131, 225, 268, 284; law of sines,
284; sagitta and, 304; spherical
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trigonometry (continued)
triangles and, 207; Yamaguchi
travel diary and, 268
Tsuda, 250
Tsunoda, 247
Tsuruga, 253
Tsuruoka city, 192

Ubara shrine, 9, 100

Uchida Kyo, 24, 82-83, 107, 205-6

Uchida Kyamei, 83, 182-83,
189, 238, 298, 307-8

Udo shrine, 150

Ueda city, 161

Ufu Chésaburo, 92

Uji Syui (Stories Edited by the Uji
Minister), 13

Ukawa Tsuguroku, 262, 280

Ukimido, 255

ukiyo-e (floating world)
paintings, 7

Ushijima Chomeiji temple, 292

Ushikawa Inari shrine,
157,197

Usui pass, 247

Ususigun village, 148

Viviani, Vincenzio, 188-89, 298

Wada Nei, 306n3

Wada Yasushi, 24, 83, 306-7, 309, 311

Wakayama, 256

Warizansyo (Mori), 65

warlords, 2-5

wasan (Japanese mathematics), 60;
age of arithmetic and, 10-14;
ascendance of, 14-21; calculus and,
22, 73; Casey’s theorem and,
296-98; Chinese influence on, 10,
27-57 (see also Chinese); decline of,
21-25; Descartes circle theorem
and, 289-91; differentiation and,
301-3; ellipses and, 191-92,
196-99, 218-25; Enriand, 22,
69-70, 73, 83, 159, 241, 301-11;
Euclid’s algorithm and, 284;
Feuerbach’s theorem and, 295-96;
Heron numbers and, 284; Heron’s
formula and, 284, 295; integration
and, 303-11; Malfatti problem and,
294-95; Neuberg’s theorem and,
299; primitive triples and, 80-81,
284; Ptolemy’s theorem and, 283;

sagitta and, 304; series expansion
and, 304-11; Steiner chain and,
292-93

Watanabe Kiichi, 99

Western culture, ix—x, xiii; calculus
and, 66, 73; Casey’s theorem
and, 296-98; culture shock and,
1-2; Descartes circle theorem
(DCT) and, 228-31, 284-91, 293,
297; Euclid’s algorithm and, 284;
Euler’s formula and, 298;
Feuerbach’s theorem and,
295-96; foreign trade and, 3-5;
Heron numbers and, 284;
Heron’s formula and, 284, 295;
inversion and, 313; law of cosines
and, 284; law of sines and, 284;
Malfatti problem and, 293-95;
Neuberg’s theorem and, 298-99;
Pascal’s triangle and, 42-43;
primitive triples and, 80-81, 284;
Ptolemy’s theorem and, 283;
Steiner chain and, 291-93;
surnames and, xviii; Viviani and,
298; yosan and, 24-25

women, 10, 106

writing systems, 13

Xiangjie Jiuzhang Suanfa (Yang), 35

Yada village, 251

Yamada gun, 118

Yamagata province, 81, 192

Yamaguchi Kanzan, x, xvi—xvii, 9, 12,
19n8, 22; background of, 244; Edo
period and, 82; temple geometry
problems and, 114-15, 120, 191,
202, 231, 233; travel diary of,
243-66

Yamaguchi school, 251

Yamaguchi travel diary: attempts at
publishing, 244; as declared
cultural asset, 244; Gion Shrine
Problem and, 250; historicity of,
244-45; inversion and, 336;
itinerary of, 245; narrative of,
246-48, 251-52, 255-61, 263-66;
problems of, 249-50, 253-57, 259,
262—65; size of, 244; solutions of,
266-81; third journey excerpts
and, 245-66

Yamamoto Kazutake, 201

Yamandani village, 252

Index

Yanagijima Myokend6 temple, 201,
313

Yang Hu, 35

Yasaka shrine, 250

Yazawa Hiroatsu, 236, 288

Yohachi, 246

Yoichi, 249

yoryo (cherished aged people), 11

yoryo ritsuryo (law of the
yoryo6 age), 11

yosan (Western mathematics), 24-25

Yoshida Mitsuyoshi, 15-16, 59;
background of, 61; Chinese and,
31-32, 36, 43; Mice Problem of, 63;
second lemma of, 224-25. See also
Jinko-ki (Large and Small Numbers)
(Yoshida)

Yoshida Tameyuki, 313; dodecahe-
drons and, 234; Edo period and
82; Hotta’s problem and, 228, 236;
Kato and, 198; three lemmas of,
218; Yamaguchi travel diary and,
266, 269-72, 274, 278

Yoshizawa, 249

Yotsuya shrine, 162

Yuasa Ichirozaemon, 15, 31

Yuisin temple, 92

Yukyuzan shrine, 120, 252

Yusai Sangaku (Mathematics of Yusai)
(Tani), 175

Zalgaller, V. A., 294

Zeami Motokiyo, 13

Zenkoji temple, 247-50, 266, 271

Zen principles, 13

zero, 30, 85

Zhou bi suan jing (The Arithmetical
Classic of the Gnomon and the
Circular Path of Heaven) (un-
known), 27-29

Zhou-Kong, 28

Zhu Shijie, 31, 40-42

Zoku Shinpeki Sanpo (Fujita), 117, 192,
202, 266

Zoku Shinpeki Sanpo Kai
(Solutions to the Shinpeki Sanpo)
(Okayu), 166

Zoku Shinpeki Sanpo Kigen (Solutions
to the Zoku Shinpeki Sanpo)
(Hiroe), 231

Zu Chongzhi, 40, 72

Zu Geng, 40

Zuishi (Records of Zui Era) (Zu), 72
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